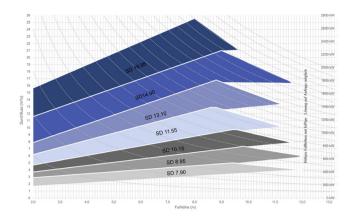

StreamDiver Potenziale nutzen

Vorteile


- + Verkürzung der Projektlaufzeit
- + Reduktion der Baukosten
- + Einfache Integration in bestehende Wehranlagen
- + Minimale Betriebs- und Wartungskosten
- + Ökologisch vorteilhaft
- + Kein Leckagerisiko
- + Geringe optische und akustische Beeinträchtigung
- + Schnell montierbar

Beschreibung	Kurzbezeichnung	Einheit	Abhängigkeit	Wert (gerundet auf 10 mm)						
			Тур	SD 7.90	SD 8.95	SD 10.15	SD 11.55	SD 13.10	SD 14.90	SD 16.95
Laufraddurchmesser	Ds	m	Ds	0,790	0,895	1,015	1,155	1,310	1,490	1,695
Distanz zwischen Saugrohrkonus und Einlaufschräge	L1	m	alpha D ≤ 20° und L1 ≥ 6,2 Ds kein Einfluss auf die Turbinenleistung	4,90	5,55	6,30	7,17	8,13	9,24	10,51
Distanz zwischen Saugrohrkonus und Einlaufschräge	L1	m	alpha D > 30° und/oder L1 < 4,6 Ds Einfluss auf die Turbinenleistung	3,64	4,12	4,67	5,32	6,03	6,86	7,80
Länge Saugrohr im Beton	L2	m	= 3,6 Ds	2,85	3,23	3,66	4,16	4,72	5,37	6,11
Abstand Saugrohraustritt zur Auslaufschräge	L3	m	= 2,7 Ds	2,14	2,42	2,75	3,12	3,54	4,03	4,58
Neigungswinkel Einlaufschräge	alpha_D	deg	≤ 20° / > 30°	≤ 20° / > 30°						
Neigungswinkel Auslaufschräge	gamma	deg	≤ 15°	≤ 15°						
Höhe Saugrohraustritt	HDT	m	= 2,0 Ds	1,58	1,79	2,03	2,31	2,62	2,98	3,39
Länge des StreamDiver-Moduls	LSD	m	~2,6 Ds	2,06	2,33	2,64	3,01	3,41	3,88	4,41
Länge Absperrorgan	LSOV	m	individuell	0,42	0,48	0,54	0,62	0,70	0,79	0,90
Abstand TWLmin (Betrieb) zur CL	Hs	m	min = Ds + 0,3 m	nach Voith-Spezifikation, min. Ds + 0.3 m						
Breite gesamtes StreamDiver-Modul	W1	m	= 2,0 Ds + 0,38 m	1,96	2,17	2,41	2,69	3,00	3,36	3,77
Horizontaler Abstand zwischen den Modulen	WD	m	= 2,0 Ds + 0,38 m	1,96	2,17	2,41	2,69	3,00	3,36	3,77
Breite Saugrohraustritt	WDT	m	= 2,0 Ds	1,58	1,79	2,03	2,31	2,62	2,98	3,39

StreamDiver Anwendungsdiagramm

Auslieferbare StreamDiver Unit

Profitieren Sie von dem Mehrwert durch den StreamDiver

- + Verkürzung der Projektlaufzeit im Vergleich zu konventionellen Kraftwerkslösungen
- + Reduktion der Baukosten um bis zu 40 %
- + Einfache Integrierbarkeit in bestehende Wehranlagen oder Querbauwerke
- + Minimale Betriebs- und Wartungskosten
- + Ökologisch vorteilhaft durch wassergeschmierte Lager und somit öl- und fettfreien Betrieb
- + Wassergeflutete Generatoren kein Leckagerisiko
- + Geringe optische und akustische Beeinträchtigung, unter Wasser installiert
- + Durch Unterwasserstecker und Aufhängung sehr schnell montierbar

Modulare Lösungen für unterschiedliche Einbausituationen

(1) Standardlösung

Durch ein konventionelles Rechensystem und über einen schrägen Einlauf strömt das Wasser zur StreamDiver Turbine.

(2) Schachtkraftwerk

Schachtkraftwerk fällt kurz und kompakt aus, da das Wasser durch einen Schacht und einen horizontalen Rechen mit Unterwasser-Rechenreinigungsmaschine geleitet wird.

(3) Vertikale Anordnung

Die vertikale Anordnung mit drehbarem Saugrohr ermöglicht eine Richtungsänderung beim Wasserdurchfluss.

(4) In-Pipe

Die In-Pipe Lösung ermöglicht die Integration in geschlossene Rohrsysteme.

Voith Hydro GmbH & Co KG Division Small Hydro Linzerstrasse 55 3100 Sankt Pölten, Austria

Kontakt: Tel +43 2742 806 32102 SmallHydro@voith.com

