

Manual de montagem e de instruções

(Tradução do manual de montagem e de instruções original)

BTS-Ex

Dispositivo de comutação térmico sem contato para limitação da temperatura máxima na superfície dos turboacoplamentos Voith

Versão 9 , 16-11-2023 TCR3626019600PT, classe de proteção 0: publicamente

Contato

Voith Group St. Pöltener Str. 43 89522 Heidenheim, ALEMANHA

Telefone: + 49 7951 32 1666

E-mail: Industry.Service@voith.com

Internet: www.voith.com

Caso tenha questões sobre o produto, entre em contato com o Serviço de apoio ao cliente da Voith, fornecendo o número de série (veja a placa de identificação).

TCR3626019600PT

O presente documento descreve o estado técnico do produto no final da redação em 16-11-2023.

Copyright © by J.M. Voith SE & Co. KG

Este documento está protegido por direitos autorais. Não pode ser total ou parcialmente traduzido, reproduzido, nem mecânica nem eletronicamente, nem transmitido a terceiros sem a autorização escrita do editor.

Índice

1	Possibilidades de uso, características do BTS-Ex	5
1.1	Uso do dispositivo de proteção em atmosferas potencialmente explosivas	5
1.2	Condições especiais para o uso em atmosferas explosivas e como dispositivo de segurança na atmosfera explosiva	7
1.3	Declaração de conformidade	8
2	Funcionamento do BTS-Ex	9
2.1	Elemento lógico	10
2.2	Detector de proximidade	10
2.3	Dispositivo de leitura	10
2.4	Interação dos componentes BTS-Ex	11
3	Dados técnicos	13
3.1	Elemento lógico	13
3.2	Detector de proximidade, flange de fixação	14
3.3	Dispositivo de leitura	14
4	Instruções de utilização	15
5	Segurança	17
5.1	Instruções de segurança	17
5.1.1	Estrutura das instruções de segurança	17
5.1.2	Definição dos sinais de segurança	18
5.2	Uso devido	18
5.3	Uso indevido	18
5.4	Indicações gerais de perigo	19
5.5	Perigos residuais	22
5.6	Atuação em caso de acidente	22
5.7	Informações relativas à operação	22
5.8	Qualificação do pessoal	23
5.9	Inspeção dos produtos	24

5.10	Placa de identificação	24
6	Instalação	25
6.1	Estado de entrega	25
6.2	Escopo de fornecimento	26
6.3	Montagem – Elemento lógico e detector de proximidade	26
6.4	Montagem, conexão – dispositivo de leitura	29
7	Indicações e ajuste do dispositivo de leitura	31
7.1	Estrutura	31
7.2	Ajuste dos interruptores DIP S1 - S2 (frequência limite)	31
7.3	Ajuste do interruptor DIP S3 (inibição de partida)	32
7.4	Ajuste do tempo de inibição de partida	32
8	Colocação em operação	34
9	Manutenção, conservação	35
9.1	Limpeza exterior	37
10	Descarte	38
11	Falhas – Soluções, detecção de erros	39
12	Pedidos de informações, solicitação de um técnico e de peças de reposição	42
13	Informações sobre peças de reposição	43
13.1	Elementos lógicos	43
13.2	Detector de proximidade, flange de fixação	44
13.3	Dispositivo de leitura	44
14	Anexo	45
14.1	Declaração de Conformidade UE	45
14.2	Detector de proximidade NJ 10-22-N-E93-Y245590 (2 m)	46
14.3	Detector de proximidade NJ 10-22-N-E93-Y246868 (5 m)	47
14.4	Detector de proximidade NJ 10-22-N-E93-Y246869 (10 m)	48
14.5	Dispositivo de leitura KFD2-SR2-Ex2.W.SM	49

1 Possibilidades de uso, características do BTS-Ex

O dispositivo de comutação térmico sem contato (BTS-Ex) funciona como sistema de monitoramento para turboacoplamentos Voith.

- O BTS-Ex permite o fácil monitoramento da temperatura dos turboacoplamentos.
- Em caso de temperatura excessiva, dependendo da aplicação
 - o operador pode ser avisado;
 - pode ser iniciado um desligamento do motor de acionamento;
 - pode ser reduzida a carga de absorvida pela máquina de serviço.
- Através da detecção atempada de temperatura excessiva, é possível evitar a perda do enchimento do turboacoplamento através dos parafusos fusíveis de segurança.
 - Dessa forma, os tempos de inatividade serão reduzidos.
- Uma vez arrefecido o turboacoplamento, o BTS-Ex volta a estar operacional.
- O BTS-Ex pode ser usado para turboacoplamentos Voith a partir do tamanho
 366.

1.1 Uso do dispositivo de proteção em atmosferas potencialmente explosivas

O BTS-Ex pode ser aplicado em atmosferas potencialmente explosivas como dispositivo de proteção para limitar a temperatura máxima permitida da superfície do turboacoplamento. É atingido um nível de proteção contra ignição IPL1 (SIL 1) em uma taxa de requisito mais baixa.

\triangle

ATENÇÃO

Perigo de explosão

Existe perigo de explosão em caso de ultrapassagem da temperatura de superfície permitida.

 Em caso de excesso de temperatura, o motor de acionamento deve ser desligado no tempo previsto (→ Instruções de serviço do turboacoplamento).

O sistema completo inclui os seguintes meios de operação elétricos:

- Elemento lógico (montado no turboacoplamento)
- Detector de proximidade para avaliação do elemento lógico
- Dispositivo de leitura com função de segurança.

Os dispositivos de segurança devem ser montados em uma máquina de categoria superior. Determinar o momento para limpeza do meio operacional (depósitos de poeiras) em função do grau de proteção IP.

O elemento lógico e o detector de proximidade podem ser usados da seguinte forma:

- Na zona 2 (explosão devido à presença de gases, categoria 3G, EPL Gc) nos grupos de explosão IIA e IIB (detector de proximidade também IIC)
- Na zona 22 (explosão devido à presença de poeira, categoria 3D, EPL Dc)-nos grupos de explosão IIIA, IIIB e IIIC
- Na zona 1 (explosão devido à presença de gases, categoria 2 G, EPL Gb) nos grupos de explosão IIA e IIB (detector de proximidade também IIC)
- Na zona 21 (explosão devido à presença de poeira, categoria 2D, EPL Db) nos grupos de explosão IIIA, IIIB e IIIC

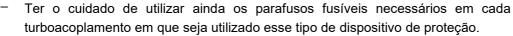
ATENÇÃO

Perigo de explosão

Existe o perigo de explosão caso não sejam respeitadas as condições de utilização.

 O produto só pode ser usado em atmosferas potencialmente explosivas devido à presença de poeiras do grupo de explosão IIIC em caso de poeiras orgânicas.

Fora das atmosferas potencialmente explosivas, o dispositivo de leitura deve ser montado em caixas com os requisitos ambientais correspondentes à categoria de proteção IP ou em caixas com homologação própria.


A qualificação relativa à temperatura da superfície depende das condições ambientais; varia de T4...T3: T4 significa que os produtos não são uma fonte de ignição para todos os gases, vapores, névoas com uma temperatura de ignição > 135. C

Em atmosferas explosivas devido à presença de poeiras, a temperatura de referência T***°°C (varia entre 85 °C e 190 °C) é relevante para as considerações seguintes em termos da distância de segurança face à temperatura de incandescência.

1.2 Condições especiais para o uso em atmosferas explosivas e como dispositivo de segurança na atmosfera explosiva

Os aparelhos só são autorizados para o uso devido e legalmente correto. O não cumprimento dessa regra anula o direito de garantia e isenta o fabricante de qualquer responsabilidade!

- Em atmosferas potencialmente explosivas, somente se pode usar acessórios que satisfaçam todos os requisitos das diretivas europeias e da legislação nacional.
- O produto só pode ser usado em atmosferas potencialmente explosivas devido à presença de poeiras do grupo de explosão IIIC em caso de poeiras orgânicas.
- As condições ambientais especificadas nessas instruções de operação devem ser impreterivelmente cumpridas.
- Cabe ao operador tomar as medidas de prevenção contra os raios.

- Se a temperatura máxima admissível na superfície do turboacoplamento ficar assegurada pelo dispositivo de segurança, para o turboacoplamento também se aplica o tipo de proteção contra ignição "Proteção por controle da fonte de ignição".
- O dimensionamento da temperatura de ativação tem de ser definido pela Voith Turbo.
- As temperaturas ambiente dos elementos individuais n\u00e3o podem ultrapassar as respectivas temperaturas limite.
- Deve ser excluída a possibilidade de danos mecânicos devido à formação de gelo.
- Os fechos devem voltar a ser colocados depois da abertura e fecho.
- O funcionamento do dispositivo de segurança só é permitido se as caixas e condutores estiverem intactos.
- A instalação deve ser efetuada segundo as normas de CEM.
- A instalação deve respeitar as disposições próprias do país onde é efetuada.
- A compensação de potencial deve ser feita. Ela deve ser realizada conforme as disposições de instalação no país onde é efetuada).
- É preciso evitar descargas eletrostáticas.
- Para garantir o desvio das descargas eletrostáticas é preciso observar as exigências nacionais.
 - As peças não condutoras não podem ultrapassar uma área de 100 cm² em IIB.
 - O BTS-Ex não pode ser usado em equipamentos com proteção elétrica anticorrosão, ou somente com o aval do fabricante e medidas especiais. As correntes de compensação não podem passar pela construção.

→ Instruções de operação do turboacoplamento

- Se necessário, proteger o elemento lógico e o detector de proximidade de modo a impedir a penetração de líquidos e/ou impurezas. Isso dependerá das condições de serviço, p. ex., em caso de sobrecarga de poeiras ou de químicos corrosivos.
- No caso de temperaturas inferiores a -20 °C, os detectores de proximidade têm que ser instalados com proteção mecânica.
- Durante a montagem, respeitar uma distância mínima de 3 mm entre o elemento lógico e o detector de proximidade (→ Capítulo 6.3).
- Após o desligamento, todos os erros/ativadores devem ter sido corrigidos, antes do BTS-Ex ter sido reiniciado ou ligado.
- Recomenda-se que os aparelhos de monitoração e os circuitos de corrente de monitoração da cadeia de desligamento sejam executados de acordo com PL c de acordo com a EN ISO 13849-1 ou SIL 1 de acordo com a EN 61508 ou EN 62061.
- As peças presas (como por gelo ou corrosão) não podem ser soltas com força em atmosferas potencialmente explosivas. É preciso evitar a formação de gelo.
- O operador deve garantir as medidas de proteção conforme seu documento de proteção contra explosão, por exemplo, proteção contra choques externos.
- Para garantir a proteção contra explosão, os equipamentos elétricos e dispositivos adicionais mecânicos devem atender às exigências das zonas válidas locais e devem ser inspecionadas pelo construtor da máquina.
- Os revestimentos/pinturas são permitidos até uma espessura de 0,2 mm no grupo de explosão IIC. No IIB/I, a espessura de 2 mm nunca pode ser ultrapassada; se necessário, dependendo da qualidade do revestimento/pintura, se efetua uma redução para, p. ex.,0,5 a 1 mm. As pinturas não podem ser realizadas pelos operadores.

1.3 Declaração de conformidade

→ Anexo (consulte declaração de conformidade)

2 Funcionamento do BTS-Ex

O dispositivo de comutação térmico sem contato (BTS-Ex) é constituído por três componentes:

- Elemento lógico
- Detector de proximidade com flange de fixação
- Dispositivo de leitura

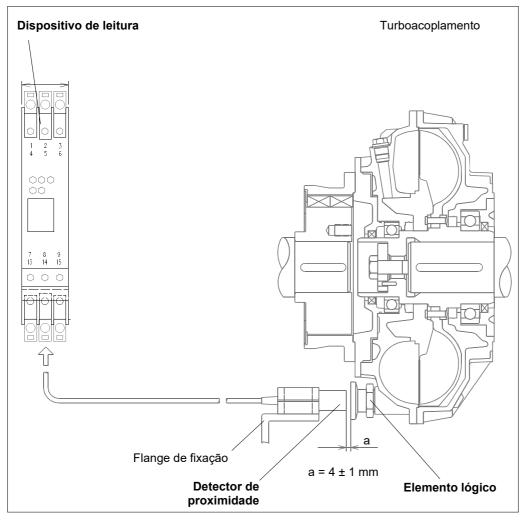


Figura 1

2.1 Elemento lógico

O elemento lógico é um componente passivo (equipamento elétrico simples). É aparafusado à roda exterior ou ao revestimento do turboacoplamento. Dessa forma, é estabelecido um contato térmico entre o elemento lógico e o turboacoplamento através do fluido de serviço.

O elemento lógico tem integrado uma bobina e um interruptor térmico. O ponto de ativação do interruptor térmico corresponde à temperatura de ativação do elemento lógico.

Temperatura nominal de ativação → Capítulo 3.1 Se a temperatura nominal de ativação for inferior, o interruptor térmico é fechado e a bobina curto-circuitada. Se a temperatura nominal de ativação for superior, o interruptor térmico é aberto e o circuito interrompido. Em caso de descida da temperatura, o interruptor térmico fecha novamente o circuito. O BTS-Ex volta a estar operacional.

2.2 Detector de proximidade

O detector de proximidade foi projetado como sensor polarizado de dois fios. Ele funciona segundo o princípio do sensor indutivo.

O detector de proximidade inclui um oscilador eletrônico que gera uma oscilação de alta frequência. Enquanto elemento condicionador da frequência, o oscilador inclui um circuito ressonante, composto por uma bobina e um condensador.

A bobina de circuito ressonante está montada na cabeça do sensor. Através dessa bobina, é gerado um campo eletromagnético alternado na cabeça do sensor.

2.3 Dispositivo de leitura

O dispositivo de leitura é uma unidade eletrônica que registra pulsos elétricos e avalia o intervalo entre os pulsos (meio operacional adicional com circuito de proteção próprio para atmosferas potencialmente explosivas).

A leitura é iniciada através da ativação da tensão de alimentação.

Após o início da leitura, a leitura dos pulsos tem que ser desativada por um período de tempo regulável (tempo de inibição de partida).

Um relé com contato inversor se desliga caso o número de pulsos por unidade de tempo não chegue a atingir um determinado valor mínimo.

2.4 Interação dos componentes BTS-Ex

Em vez de um parafuso cego, o elemento lógico é aparafusado ao turboacoplamento. O detector de proximidade é montado em paralelismo axial com o turboacoplamento com o flange de fixação, sendo ligado ao dispositivo de leitura.

Montagem, posição → Capítulo 6.3

A bobina do elemento lógico é acoplada por indução à bobina do detector de proximidade, caso o elemento lógico se encontre depois da cabeça do detector de proximidade. Com o interruptor térmico fechado, a energia é transmitida do detector de proximidade para o elemento lógico. O oscilador é atenuado, consumindo menos corrente.

Se a temperatura do acoplamento exceder a temperatura de ativação do elemento lógico, o disjuntor térmico interrompe o circuito elétrico no elemento lógico. O elemento lógico deixa de poder atenuar o oscilador no detector de proximidade.

O dispositivo de leitura detecta a atenuação do detector de proximidade devido ao respectivo consumo de corrente.

Caso o turboacoplamento no qual está aparafusado o elemento lógico rode, o elemento lógico inicia um movimento contínuo passando pelo detector de proximidade. Desta forma, são gerados pulsos de supressão contínuos. O relé de saída do dispositivo de leitura está ativo.

No caso de temperatura excessiva, esses pulsos de atenuação são excluídos, ou seja, a frequência limite ajustada no dispositivo de leitura não é alcançada. O dispositivo de leitura detecta a ausência dos pulsos e o relé de saída se desliga.

Frequência limite

→ Capítulo 3.3

Na partida do turboacoplamento, é definido um tempo de inibição de partida no dispositivo de leitura. Enquanto a inibição de partida estiver ativa, o relé de saída permanece ativo.

Decorrido o período definido, a velocidade do turboacoplamento com o elemento lógico deverá ter excedido a frequência limite definida.

Λ

ATENÇÃO

Perigo de danos pessoais e materiais

Após a desconexão, o controle tem que ser bloqueado de forma a impedir qualquer nova partida automática.

- Desligue o equipamento na qual o turboacoplamento está montado e proteja-o contra nova ligação.
- Sempre que forem efetuados trabalhos no turboacoplamento e no BTS-Ex, assegure-se de que tanto o motor de acionamento como a máquina de serviço se encontrem parados e de que a possibilidade de partida inesperada fica excluída em qualquer circunstância.

temperatura máxima permitida → Instruções de operação do turboacoplamento

ATENÇÃO

Perigo de explosão

Existe o perigo de explosão caso não seja respeitada a temperatura máxima permitida.

 A nova partida só deverá ser efetuada se a temperatura do turboacoplamento for inferior à temperatura máxima permitida para a conexão do motor.

3 Dados técnicos

3.1 Elemento lógico

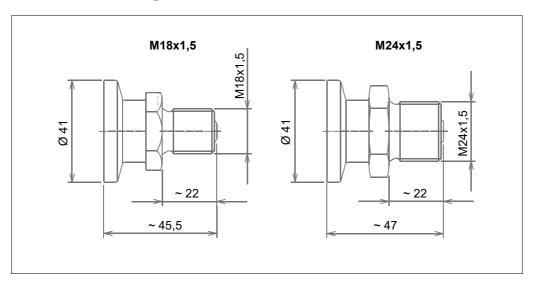


Figura 2

Para os diversos tamanhos de turboacoplamento, encontram-se disponíveis os seguintes elementos lógicos:

Tamanho da rosca	M18x1,5	M24x1,5
Temperatura nominal de ativação	85/90/100/110/ 125/140/160/180 °C	85/125/140/ 160/180 °C
adequado para o tamanho do acoplamento	366 – 650	750 – 1150
Tolerância de ativação	±	5 °C
Temperatura de comutação	aprox. 40 K abaixo da	temperatura de ativação
Abertura da chave	27	32
Torque de aperto	60 Nm	144 Nm
A classificação é ℰℷ Ⅱ 2G/2D	Ui = 10 V Ii = 5	60 mA Pi = 50 mW
Temperatura de aplicação na área da bobina	-40 °C a	a +120 °C
Temperatura de aplicação na área do interruptor térmico	até 90 °C (T5), até 125 °C (T4), até 190 °C (T3)	

Tabela 1

INSTRUÇÕES DE SEGURANÇA

- O tipo do elemento lógico está gravado na carcaça com:
 - Voith
 - Temperatura nominal de ativação
 - Identificação Ex Ѿ II Ex i X
 - Número de série (exemplo: Voith 140 °C 🖾 II Ex i X 1234 5678)
- A temperatura nominal de ativação do elemento lógico é determinada juntamente com o dimensionamento do acoplamento.

3.2 Detector de proximidade, flange de fixação

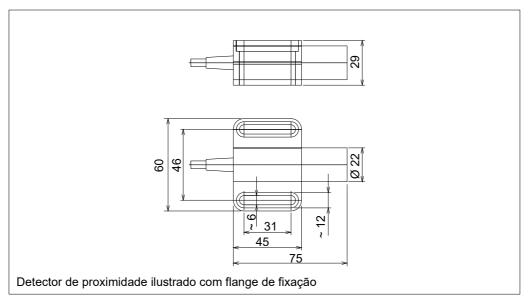


Figura 3

3.3 Dispositivo de leitura

→ Anexo Tipo: KFD2-SR2-Ex2.W.SM

4 Instruções de utilização

Essas instruções irão ajudá-lo a usar o dispositivo de comutação térmico sem contato (**BTS-Ex**) de forma segura, apropriada e econômica.

O cumprimento das instruções incluídas nesse manual permite-lhe:

- aumentar a confiabilidade e a vida útil do equipamento;
- evitar perigos;
- diminuir o número de reparos e tempos de inatividade.

Esse manual deve:

- estar sempre disponível no local de aplicação do BTS-Ex;
- ser lido e usado por todas as pessoas que executam trabalhos no acoplamento ou o colocam em operação.

Encontrará mais documentos anexados a esse manual de instruções, os quais têm que ser obrigatoriamente respeitados.

O dispositivo de comutação térmico sem contato foi projetado de acordo com os mais recentes avanços tecnológicos e as regras técnicas de segurança reconhecidas. Contudo, um manuseio incorreto e o uso não previsto podem colocar em risco a vida e integridade física do usuário ou de terceiros e/ou provocar danos na instalação e em outros objetos.

Peças de reposição:

As peças de reposição têm que estar em conformidade com os requisitos técnicos estabelecidos pela Voith. Isso será garantido sempre que sejam usadas peças de reposição originais.

A montagem e/ou o uso de peças de reposição não originais podem alterar negativamente as características estruturais do **BTS-Ex** e prejudicar a segurança.

A Voith não se responsabiliza por quaisquer danos resultantes do uso de peças de reposição que não sejam originais.

Para a manutenção, use um equipamento de oficina adequado. A manutenção e/ou reparo especializados somente podem ser garantidos pelo fabricante ou por uma oficina autorizada.

Esse manual foi elaborado com o máximo cuidado possível. Para informações mais detalhadas, entre em contato com:

Voith Group St. Pöltener Str. 43 89522 Heidenheim, ALEMANHA

Telefone: + 49 7951 32 1666

E-mail: Industry.Service@voith.com

Internet: www.voith.com

© Voith 2023

A transmissão e reprodução desse documento e o uso e a divulgação do seu conteúdo são proibidos, desde que não esteja expressamente autorizado. Infrações sujeitas a indenização por perdas e danos. Reservados todos os direitos de registro de patentes, desenhos industriais ou modelos industriais.

A empresa Voith reserva-se o direito de efetuar alterações.

5 Segurança

5.1 Instruções de segurança

No manual de instruções são usadas indicações de segurança com as seguintes denominações e símbolos descritos.

5.1.1 Estrutura das instruções de segurança

DESIGNAÇÃO DE PERIGOS

Consequências dos perigos

Origem dos perigos

Medidas de segurança

Designação de perigos

A designação de perigos divide o grau de perigosidade em vários níveis:

Designação de perigos	Grau de perigosidade	
↑ PERIGO	Morte ou ferimentos graves (danos pessoais irreversíveis)	
⚠ ATENÇÃO	Possibilidade de morte ou de ferimentos muito graves	
⚠ CUIDADO	Possibilidade de ferimentos leves ou menores	
NOTA	Possibilidade de danos materiais - do produto - da área circundante	
INSTRUÇÕES DE SEGURANÇA	Instruções gerais de utilização, informações úteis, procedimentos de trabalho seguros e medidas de segurança adequadas	

Tabela 2

Consequências dos perigos

A consequência do perigo indica o tipo de perigo.

Origem dos perigos

A origem dos perigos indica a respectiva causa.

Medidas de segurança

As medidas de segurança descrevem as medidas a ser adotadas face aos perigos.

5.1.2 Definição dos sinais de segurança

Símbolo	Definição
EX	Perigo de explosão A identificação através do símbolo de perigo de explosão chama a atenção para eventuais perigos a serem tidos em conta em caso de utilização em atmosferas potencialmente explosivas.

Tabela 3

5.2 Uso devido

- O dispositivo de comutação térmico sem contato (BTS-Ex) destina-se a monitorar à distância a temperatura dos turboacoplamentos Voith e foi projetado para aplicações industriais. Qualquer outra utilização fora deste âmbito, como por exemplo, em condições operacionais ou de utilização não previstas, será considerada indevida.
- A utilização devida inclui também a observação do presente manual de montagem e de instruções.
- O fabricante não se responsabiliza por danos resultantes do uso indevido. Esse risco é da total responsabilidade do usuário.

5.3 Uso indevido

Dimensionamento → Manual de instruções Turboacoplamento

- Não ser respeitado o dimensionamento.
- Qualquer outra utilização fora deste âmbito, como p. ex., para obter potências e velocidades mais elevadas, ou para condições operacionais não previstas, será considerada indevida.
- Além disso, não devem ser usados dispositivos BTS-Ex ou peças de reposição de terceiros.

5.4 Indicações gerais de perigo

Em todos os trabalhos no dispositivo de comutação térmico sem contato devem ser cumpridas as normas locais em matéria de prevenção de acidentes, bem como as normas para a instalação de equipamentos elétricos!

ATENÇÃO

Perigo de explosão

Em caso de incumprimento das normas ou alteração não autorizada, existe perigo de explosão.

Em atmosferas potencialmente explosivas, os trabalhos no dispositivo de comutação térmico sem contato devem ser efetuados respeitando as normas locais em matéria de prevenção de acidentes e as normas para a montagem de equipamentos elétricos! Não são permitidas modificações em equipamentos elétricos para áreas potencialmente explosivas, incluindo cabos de conexão.

Perigos durante os trabalhos no dispositivo de comutação térmico sem contato:

PERIGO

Choque elétrico

Caso sejam montados ou fixados incorretamente componentes elétricos e as ligações elétricas estejam desconectadas, podem ocorrer choques elétricos ou ferimentos graves em pessoas, resultando eventualmente em morte.

Componentes elétricos montados ou fixados incorretamente e ligações elétricas desconectadas podem provocar danos no equipamento.

- A conexão à rede de alimentação elétrica deve ser feita por um eletricista qualificado, respeitando a tensão nominal e o consumo máximo de corrente.
- A tensão da rede tem que coincidir com a tensão de rede indicada na placa de características elétricas.
- A rede tem de estar protegida por um fusível elétrico.

Choque elétrico:

Λ

PERIGO

Processos eletrostáticos

Uma pessoa pode sofrer um choque elétrico devido a uma descarga estática.

- A instalação do equipamento, no qual o turboacoplamento está montado, tem que ser realizada por um eletricista.
- A máquina e a instalação elétrica dispõem de conexões de aterramento.

Trabalhos no turboacoplamento:

Λ

ATENÇÃO

Perigo de ferimentos

Durante a realização de trabalhos no turboacoplamento existe o perigo de ocorrência de ferimentos por corte, esmagamento, queimaduras devido a superfícies quentes e queimaduras por frio, em caso de temperaturas negativas.

- Respeite o manual de montagem e de instruções do turboacoplamento!
- Nunca toque no turboacoplamento sem luvas de proteção.
- Inicie os trabalhos apenas quando o turboacoplamento estiver frio.
- Durante os trabalhos no turboacoplamento, certifique-se de que dispõe de iluminação suficiente, de um espaço de trabalho suficientemente grande e de boa ventilação.
- Desligue o equipamento na qual o turboacoplamento está montado e proteja-o contra nova ligação.
- Sempre que forem efetuados trabalhos no turboacoplamento, certifique-se de que tanto o motor de acionamento como a máquina de serviço estão parados e de que a partida está excluída em quaisquer circunstâncias.

Ruído:

Nível de pressão sonora → Folha de rosto do manual de instruções do turboacoplamento

ATENÇÃO

Perda de audição, lesões auditivas permanentes

O turboacoplamento gera ruído durante a operação. Se o nível de pressão sonora $L_{PA, 1m}$ equivalente com ponderação A for superior a 80 dB (A), podem ocorrer lesões auditivas.

Use proteção auditiva.

ATENÇÃO

Risco de cegueira devido a salpicos do fluido de serviço quente, perigo de queimaduras

Em caso de sobrecarga térmica do turboacoplamento, os parafusos fusíveis são ativados. O vazamento do fluido de serviço ocorre através desses parafusos fusíveis.

Isso só acontece em caso de uso indevido.

- As pessoas que mantenham nas proximidades do turboacoplamento têm que usar óculos de proteção.
- Certifique-se de que os salpicos do fluido de serviço n\u00e3o entram em contato com pessoas.
- Após a projeção dos parafusos fusíveis, desligue imediatamente o acionamento.
- Os dispositivos elétricos que se encontram junto do turboacoplamento têm que estar protegidos contra projeção.

Uso indevido → Capítulo 5.3

ATENÇÃO

Perigo de incêndio

Após a ativação dos parafusos fusíveis, os salpicos de óleo podem inflamar-se em superfícies quentes e provocar um incêndio, bem como liberar gases e vapores tóxicos.

- Certifique-se de que os salpicos do fluido de serviço não entram em contato com as peças quentes da máquina, dispositivos de aquecimento, faíscas ou chamas abertas.
- Após a ativação dos parafusos fusíveis, desligar imediatamente a máquina acionadora.
- Respeite as indicações que constam nas folhas de dados de segurança.

\triangle

CUIDADO

Perigo de escorregamento

Perigo de escorregamento devido a salpicos de solda liberados pelos parafusos fusíveis e a salpicos de fluido de servico.

- Providencie uma bandeja de coleta com as dimensões adequadas.
- Remover imediatamente os salpicos de solda liberados pelo parafuso fusível e os salpicos do fluido de serviço.
- Respeite as indicações que constam nas folhas de dados de segurança.

5.5 Perigos residuais

ATENÇÃO

Perigo de danos pessoais e materiais

As consequências pelo uso indevido ou pela operação incorreta podem ser a morte, ferimentos graves ou leves, bem como danos materiais e ambientais.

- Somente pessoas com formação e instrução suficientes e autorizadas podem trabalhar no ou com o turboacoplamento ou com o dispositivo de comutação térmico sem contato.
- Respeitar os avisos e as instruções de segurança.

5.6 Atuação em caso de acidente

INSTRUÇÕES DE SEGURANÇA

• Em caso de acidente, têm que ser cumpridas as normas locais, bem como as instruções de operação e as medidas de segurança para o operador.

5.7 Informações relativas à operação

INSTRUÇÕES DE SEGURANÇA

 Se forem detectadas irregularidades durante a operação, a unidade de acionamento tem que ser de imediato desligada.

Dispositivos de monitoramento:

NOTA

Danos materiais

Danos no turboacoplamento devido à inoperabilidade de dispositivos de monitoramento.

- Verifique se os dispositivos de monitoramento existentes estão operacionais.
- Repare de imediato os dispositivos de monitoramento defeituosos.
- Nunca ligar os dispositivos de segurança em ponte.

Instruções de montagem e de operação / versão 9 / TCR3626019600PT pt / classe de proteção 0: publicamente / 16-11-2023

5.8 Qualificação do pessoal

Todos os trabalhos, como por exemplo, de transporte, armazenamento, instalação, conexão elétrica, colocação em operação, operação, manutenção, conservação e reparo somente podem ser executados por pessoal técnico qualificado e autorizado.

Pessoal técnico qualificado no sentido previsto nesse manual de instruções são as pessoas que estão familiarizadas com o transporte, armazenamento, instalação, conexão elétrica, colocação em operação, manutenção, conservação e reparo e que possuem as qualificações adequadas para o desempenho das suas atividades. A qualificação tem de ser garantida através de treinamento e instrução.

O BTS-Ex, em consonância com os índices elétricos, pode ser operado em áreas potencialmente explosivas da zona 1 (gás, categoria 2G) e zona 21 (poeiras, categoria 2D) somente por técnicos com qualificação adequada conforme as normas de segurança da operação ou normas semelhantes locais.

Os dados da placa de identificação devem ser obrigatoriamente observados. Observe as instruções nesse manual de instruções, bem como as condições de aplicação e os dados permitidos provenientes das impressões/placas de identificação do respectivo equipamento.

Esse pessoal deve ter treinamento, instrução ou autorização para:

- operar ou fazer manutenção dos equipamentos, de forma apropriada e conforme os padrões da técnica de segurança;
- usar devidamente os dispositivos de elevação, meios e pontos de fixação;
- descartar adequadamente os meios e seus componentes, como por exemplo, graxas lubrificantes;
- preservar e utilizar o equipamento de segurança conforme os padrões da técnica de segurança;
- evitar acidentes e prestar os primeiros socorros.

O pessoal em formação somente pode executar trabalhos no turboacoplamento ou no dispositivo de comutação térmico sem contato sob a supervisão de uma pessoa qualificada e autorizada.

O pessoal selecionado para os trabalhos no dispositivo de comutação térmico sem contato deve:

- ser responsável;
- ter, pelo menos, a idade mínima prevista na legislação;
- possuir treinamento, instrução e autorização para os trabalhos previstos.
- cumprir durante os trabalhos em atmosferas potencialmente explosivas utilizar somente ferramentas autorizadas para uso em áreas potencialmente explosivas.
 Evitar a formação de faíscas.

5.9 Inspeção dos produtos

Nos termos da lei, somos obrigados a inspecionar os nossos produtos mesmo após a respectiva entrega.

Nosso endereço → Página 2

Portanto, comunique todo e qualquer assunto que seja do nosso interesse. Por exemplo:

- Alteração de dados operacionais.
- Experiências com a instalação.
- Falhas recorrentes.
- Dificuldades sobre esse manual de montagem e de instruções.

5.10 Placa de identificação

A placa de identificação aplica-se a todo o grupo construtivo, composto por um aparelho de leitura, detector de proximidade e elemento lógico é instalado sobre o dispositivo de leitura.

	Voith Group Division Industry J.M. Voith SE & Co. KG Voithstraße 1, 74564 Crailsheim, Alemanha		
	- avaliador (Voith II	D 201.03905210)	
BTS-Ex:	 detector de proxir 	midade	C€
	- elemento de com	utação	
03 ATEX 0013 X		Ano de construçã	o: 2024
(II 3G Ex ic IIB T	4/T3 Gc	SYST 🖾 II 2G Ex	k ib IIB T4/T3 Gb
II 3D Ex ic IIIC ☐	Γ125°C/T180°C Dc	SYST 😉 II 2D Ex	ib IIIC T125°C/T180°C Db

Figura 4

Os símbolos da placa de características possuem o seguinte significado:

SIST: Identificação de proteção contra explosão para todo o dispositivo de segurança

(£x): Símbolo de proteção contra explosão

II: Grupo de explosão

2G, 3G: Categorias dos aparelhos Gás 2D, 3D: Categorias dos aparelhos Poeira Ex ib/ic: Tipos de proteção contra ignição

T: Temperatura ou classes de temperaturaGc, Gb: Nível de proteção de aparelhos contra gásDc, Db: Níveis de proteção de aparelhos contra poeira

INSTRUÇÕES DE SEGURANÇA

 A classe de temperatura (G)/temperatura máxima da superfície dos elementos lógicos (D) depende da instalação efetuada e das condições de serviço do turboacoplamento. Essa indicação será, por isso, fornecida nas instruções de serviço do turboacoplamento.

6 Instalação

ATENÇÃO

Perigo de ferimentos

Durante os trabalhos no dispositivo de comutação térmico sem contato, observar especialmente o → capítulo 5 (Segurança)!

- Antes de iniciar a instalação, certifique-se de que não está garantida a ausência de tensão em todos os componentes.
- Os parafusos fusíveis protegem o turboacoplamento de danos resultantes de uma sobrecarga térmica.
 - Mesmo ao usar o BTS-Ex, os parafusos fusíveis de segurança existentes não podem ser trocados por parafusos cegos ou parafusos fusíveis de segurança com temperaturas nominais de ativação diferentes!
- Nunca operar o turboacoplamento sem parafusos fusíveis!

As atividades de montagem e manutenção na zona Ex só podem ser executadas sob determinadas condições. As seguintes notas devem ser observadas:

- As determinações de instalação locais devem ser consideradas.
- Os trabalhos devem ser executados somente em atmosferas que não sejam potencialmente explosivas.
- É preciso tomar medidas de precaução quando houver a presença de sulfetos de hidrogênio, óxido de etileno, monóxido de carbono e/ou outras substâncias do grupo de explosão IIC. Como essas substâncias possuem uma energia de ignição muito baixa, nesse caso é permitido usar apenas ferramentas sem centelha.

6.1 Estado de entrega

- O elemento lógico com anel de vedação,
- o detector de proximidade com flange de fixação e
- o dispositivo de leitura

geralmente são fornecidos soltos, em conjunto com o turboacoplamento.

6.2 Escopo de fornecimento

Combinações padrão de elementos lógicos e parafusos fusíveis:

Elemento lógico	Parafusos fusíveis de segurança	Marca de cor
160 °C	180 °C	azul
140 °C	160 °C	verde
125 °C	160 °C	verde
110 °C	140 °C	vermelho

Tabela 4

Entrar em contato Voith Turbo → Documentação de pedido

A correspondência entre elementos lógicos e parafusos fusíveis pode variar de acordo com as características do projeto. Temperaturas nominais de ativação do elemento lógico divergentes (85 °C, 90 °C, 100 °C, 110 °C, 125 °C, 140 °C, 160 °C e 180 °C) também estão disponíveis (→ capítulo 13).

6.3 Montagem – Elemento lógico e detector de proximidade

ATENÇÃO

Perigo de explosão

Incumprimento das normas de montagem.

- Para evitar danos, o elemento lógico e o detector de proximidade devem ser montados depois da montagem e antes do enchimento do turboacoplamento.
- O dispositivo de comutação e os cabos de conexão não podem ser danificados. Todas as tubagens têm que estar assentes e protegidas contra os efeitos mecânicos.
- Não devem ser efetuadas quaisquer alterações em equipamentos utilizados em atmosferas potencialmente explosivas.
 - Não é possível reparar esses equipamentos.
- Têm que ser evitados choques no detector de proximidade. Os trabalhos na máquina devem ser executados somente em atmosferas que não sejam potencialmente explosivas.
- Para evitar cargas eletrostáticas, os cabos de ligação devem ser instalados de acordo com a norma EN 60079-14 e não podem estar em fricção/a roçar em nenhum ponto durante a operação.
- Aparafusar o elemento lógico com anel de vedação na roda exterior (item 0300) do turboacoplamento no lugar de um parafuso cego.

Instruções de montagem e de operação / versão 9 / TCR3626019600PT pt / classe de proteção 0: publicamente / 16-11-2023

Disposição do elemento lógico no lado da roda exterior ¹):

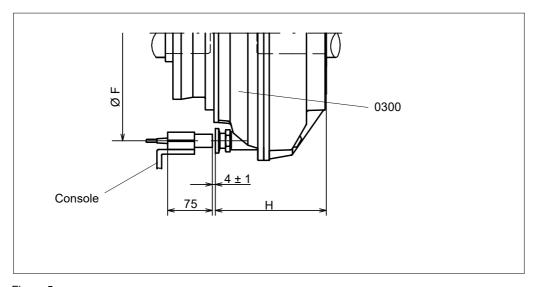


Figura 5

1) No tipo DT, a montagem também pode ser efetuada do lado da roda exterior adjacente.

Dimensões para montagem do elemento lógico e do detector de proximidade:

	Lado da roda exterior		
Tipo de turboacoplamento	Diâmetro da circunferência primitiva Ø F [mm]	Distância ~ H [mm] Acoplamento T	Distância ~ H [mm] Acoplamento DT
366 T	350 ± 1	193	-
422 T	396 ± 1	206	-
487 T	470 ± 1	228	-
562 T	548 ± 1	248	-
650 T	630 ± 1	289	-
750 T	729 ± 1	318	-
866 T / 866DT	840 ± 1	356	600
1000 T / 1000 DT	972 ± 1	369	672
1150 T / 1150 DT	1128 ± 1	458	783

Tabela 5

As medidas de montagem de regulamentos divergentes devem ser consultadas no plano de montagem.

NOTA

Danos materiais

Incumprimento das normas de montagem.

- Fazer um console com a devida estabilidade (não fornecido pela Voith)!
- Evitar obrigatoriamente vibrações, pois podem causar sinais de erro!
- Observar a zona isenta de metal (15 mm) à volta da cabeça do detector de proximidade (→ ver diagrama esquemático)!

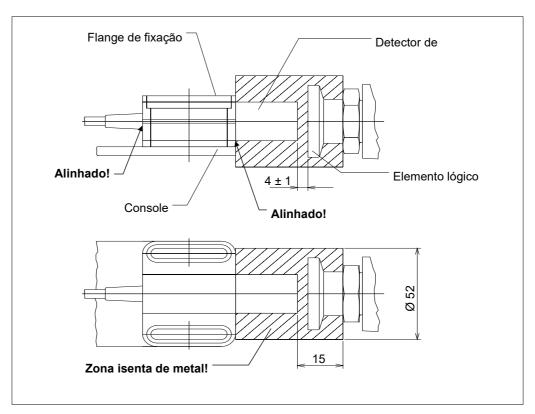
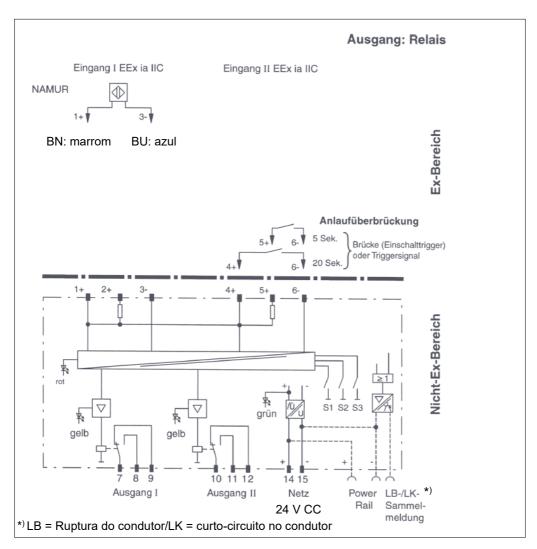


Figura 6

- Montar o detector de proximidade com flange de fixação sobre o diâmetro da circunferência primitiva do elemento lógico e em paralelismo axial com o turboacoplamento, sobre um console.
- Montar o detector de proximidade atrás, alinhado com a flange de fixação. Montar a flange de fixação à frente, alinhado com o console.
- Ajustar a distância entre a cabeça do detector de proximidade e o elemento lógico para 4 ± 1 mm!

6.4 Montagem, conexão – dispositivo de leitura


NOTA

Danos materiais

Danos na instalação devido a uma conexão inadequada aos componentes elétricos ou ao incumprimento das instruções de montagem.

- A cablagem do BTS-Ex n\u00e3o pertence ao escopo de fornecimento da Voith.
- Para distâncias maiores entre o detector de proximidade e o dispositivo de leitura, recomendamos o uso de um condutor blindado como extensão.
- A resistência total de um cabo de extensão entre o detector de proximidade e o dispositivo de leitura deve ser inferior a 100 Ω.
- Montar o dispositivo de leitura em um armário de distribuição adequado e conectar segundo o plano de conexões.

Diagrama elétrico:

Dispositivo de leitura KFD2-SR2-Ex2.W.SM → Capítulo 14.5

Atribuição dos terminais: dispositivo de leitura

N.º dos bornes	Descrição	Dados
1+	Entrada I	Entrada I: Ex ia IIC Detector de proximidade BU
2+	Entrada I	-
3-	Entrada I	Entrada I: Ex ia IIC Detector de proximidade BU
4+	Entrada II	Entrada II: Ex ia IIC 20 s de inibição da partida
5+	Entrada II	- 5 s de ligação em ponte na partida
6-	Entrada II	Entrada II: Ex ia IIC Inibição de partida COM
7	Saída I	COM (contato de abertura/contato de fecho)
8	Saída I	Contato: contato de fecho (NO)
9	Saída I	Contato: contato de abertura (NC)
10	Saída II	COM (contato de abertura/contato de fecho)
11	Saída II	Contato: contato de fecho (NO)
12	Saída II	Contato: contato de abertura (NC)
13	-	-
14	Rede	24 V CC +
15	Rede	24 V CC -

Tabela 6

7 Indicações e ajuste do dispositivo de leitura

7.1 Estrutura

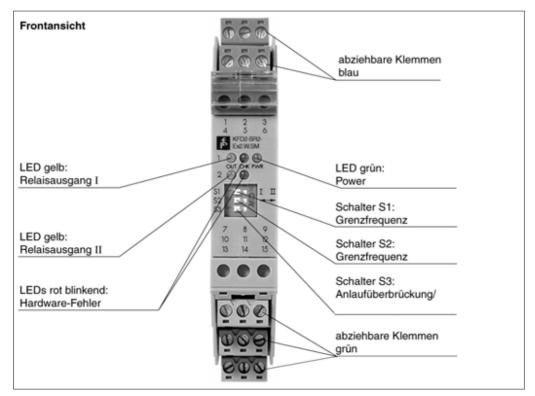


Figura 8

7.2 Ajuste dos interruptores DIP S1 - S2 (frequência limite)

Os interruptores DIP devem ser ajustados para **S2 = I** e **S1 = II**:

Frequência limite	Velocidade limite	Histerese	Interruptor S2	Interruptor S1
0,1 Hz	6 min ⁻¹	0,02 Hz	Ι	1
0,5 Hz	30 min ⁻¹	0,1 Hz	1	II
2,0 Hz	120 rpm	0,4 Hz	II	1
10,0 Hz	600 rpm	2,0 Hz	Ш	II

Tabela 7

A velocidade limite ao usar um elemento lógico é de 30 rpm.

7.3 Ajuste do interruptor DIP S3 (inibição de partida)

ATENÇÃO

Perigo de explosão

O interruptor S3 não pode ser colocado na posição II, pois esta não garante o funcionamento do dispositivo de segurança!

- Ajustar corretamente o interruptor DIP S3.
- Executar um teste de operação no âmbito da colocação em operação.

O interruptor DIP deve ser ajustado para **S3 = I**:

Interruptor S3	Posição I
Funcionamento	Aparelho de avaliação com inibição de partida
Entrada I	Entrada de pulsos 1 (NAMUR): É imprescindível ligar o sensor Voith original.
Entrada II	Inibição de partida: Contato dos bornes 4 + 6: 20 s Contato dos bornes 5 + 6: 5 s 1)
Saída I	MÍN./passivo
Saída II	MÍN/ativo

Tabela 8

 Ajuste padrão quando não especificado em contrário nas instruções de operação do turboacoplamento Voith, Dados Técnicos.

7.4 Ajuste do tempo de inibição de partida

ATENÇÃO

Perigo de explosão

Durante o tempo de inibição de partida **não** se registra uma temperatura excessiva no turboacoplamento!

- A nova partida só deverá ser efetuada se a temperatura do turboacoplamento for inferior à temperatura máxima permitida para a conexão do motor.
- Executar um teste de operação no âmbito da colocação em operação.

INSTRUÇÕES DE SEGURANÇA

- O tempo de inibição de partida começa com a ativação da inibição de partida.
- Depois de decorrido o tempo de inibição de partida, a velocidade do turboacoplamento com o elemento lógico deverá ter sido claramente excedida!
- Regulação de fábrica do tempo de inibição de partida: 5 s.

Dispositivo de leitura com inibição de partida (S3 = I)

Quando a frequência limite ajustada com os interruptores DIP S1 e S2 não é atingida, o dispositivo de leitura com inibição de partida coloca a saída I no estado passivo e a saída II no estado ativo (→ ver diagrama esquemático).

Entrada I

é supervisionada da quebra do cabo/curto-circuito.

É imprescindível ligar o sensor Voith original.

Entrada II

tem de ser utilizada para iniciar uma inibição de partida. Aqui é realizada uma supervisão da quebra do cabo/curto-circuito. A inibição de partida pode ser selecionada entre 5 e 20 segundos, através de uma ponte (disparador de conexão) ou de um sinal de ativação externo.

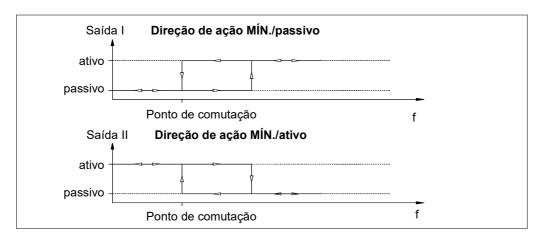


Figura 9

8 Colocação em operação

ATENÇÃO

Perigo de ferimentos

Durante os trabalhos no dispositivo de comutação térmico sem contato, observar especialmente o → capítulo 5 (Segurança)!

- Uma colocação em operação executada incorretamente pode causar danos pessoais, materiais ou ambientais!
- A execução da colocação em operação, em especial a primeira partida do turboacoplamento, somente pode ser efetuada por pessoal técnico especializado!
- Proteja a instalação contra a ligação inadvertida!
- Verificar a cablagem de acordo com o diagrama elétrico (→ capítulo 6.4).
- Verificar, em particular, a cablagem correta da tensão de alimentação!
- Aplicar a tensão de alimentação no dispositivo de leitura, primeiro sem partida do turboacoplamento. Enquanto a inibição de partida estiver ativa, o relé de saída permanece ativo e o LED frontal acende.
- Depois de decorrido o tempo de inibição de partida, o relé de saída desliga e o LED frontal apaga.
- Se necessário, ajuste o tempo de inibição de partida segundo (→ Capítulo 7.3).
- Em caso de ativação externa, retirar a ponte montada de fábrica entre os bornes no dispositivo de leitura.
- Iniciar o BTS-Ex normalmente como turboacoplamento. Depois de decorrido o tempo de inibição de partida, a velocidade do turboacoplamento com o elemento lógico deverá ter excedido claramente a frequência limite. Se não houver temperatura excessiva, o relé de saída permanece ativo e o LED frontal acende.
- Desligar o acionamento através do turboacoplamento, deixar o BTS-Ex operacional. Se a velocidade do turboacoplamento com o elemento lógico não alcançar a frequência limite ajustada, o relé de saída desliga e o LED frontal apaga.
- A operação normal pode ser iniciada. Em caso de danos (→ Capítulo 11).

9 Manutenção, conservação

Manutenção e conservação: uma combinação de atividades que são executadas para manter um objeto em um estado ou repô-lo em um estado, que cumpra os requisitos das respectivas especificações e que garanta a execução das funções que lhe são exigidas.

Inspeção: uma atividade que implica a análise detalhada do objeto, com o objetivo de obter informações fiáveis sobre o estado do referido objeto. Executa-se sem a desmontagem do mesmo ou, se necessário, com uma desmontagem parcial complementada por medidas como, por exemplo, medições.

Inspeção visual: uma inspeção no âmbito da qual são detectados erros visíveis, como por exemplo, falta de parafusos, sem recorrer ao uso de dispositivos de acesso ou ferramentas.

Inspeção de perto: uma inspeção na qual, além dos aspectos da inspeção visual, são detectados erros como, p.r ex., parafusos soltos, somente detectáveis mediante o uso de dispositivos de acesso como, por exemplo, escadas (se necessário) e ferramentas. Normalmente, esse tipo de verificação não requer a abertura da carcaça ou a desconexão da tensão dos equipamentos.

Inspeção detalhada: uma inspeção na qual, para além dos aspectos da inspeção de perto, são detectados erros como, por exemplo, conexões soltas, somente detectáveis através da abertura da carcaça e/ou, se necessário, mediante o uso de ferramentas e dispositivos de teste.

\triangle

ATENÇÃO

Perigo de ferimentos

Durante os trabalhos no dispositivo de comutação térmico sem contato, observar especialmente o → capítulo 5 (Segurança)!

- Mantenha sempre livres os caminhos de acesso para o turboacoplamento!
- Os trabalhos de conservação e de manutenção somente podem ser efetuados por pessoal especializado qualificado e autorizado! A qualificação é garantida através da formação e instrução no turboacoplamento.
- Não se pode efetuar alterações aos produtos que são operados com conexão com áreas potencialmente explosivas.
- No caso de uma conservação e manutenção incorretamente executadas as consequências são possivelmente a morte, ferimentos graves ou leves, danos materiais ou danos ambientais.

Qualificação → Capítulo 5.8

- Desligue o equipamento na qual o turboacoplamento está montado e proteja-o contra nova ligação.
- Sempre que forem efetuados trabalhos no turboacoplamento, certifique-se de que tanto o motor de acionamento como a máquina de serviço estão parados e de que a partida está excluída em quaisquer circunstâncias!
- Em atmosferas potencialmente explosivas, somente se pode usar acessórios que satisfaçam todos os requisitos das diretivas europeias e da legislação nacional.
- As medidas de conservação com desmontagem da máquina devem ser executadas somente em atmosferas que não sejam potencialmente explosivas.
- A substituição de componentes somente pode ser feita com peças de reposição originais, que também estejam homologadas para a utilização em áreas potencialmente explosivas, isso também se aplica aos lubrificantes e meios auxiliares.
- Os dispositivos que estejam em atmosferas potencialmente explosivas têm que ser sujeitos a manutenção e limpos com regularidade. Os intervalos são definidos pelo proprietário no local, de acordo com as condições ambientais.
- Após a manutenção e/ou conservação, recolocar todas as peças e indicações removidas na posição original.
- Após os reparos, a função da ligação equipotencial deve ser verificada.
- Os intervalos de manutenção devem ser efetuados de acordo com o manual de instruções, salvo especificação em contrário por parte do fabricante.

Imediatamente após a conclusão dos trabalhos de conservação e manutenção, monte novamente todos os revestimentos de proteção e os dispositivos de segurança nas suas posições originais. Verifique se eles estão funcionando corretamente!

Plano de manutenção:

Prazo	Trabalhos de manutenção
Após cada 500 horas de operação, no máximo, após 1 mês	Verificar se o equipamento apresenta irregularidades (verificação visual, acúmulo de poeiras).
Verificação da operação silenciosa e aquecimento com meios de medição adequados após cada 1 mês/6 meses	Inspeção visual (mensalmente), Inspeção de perto (semestral)
O mais tardar 3 meses após a colocação em operação, depois anualmente	Verificar a integridade do equipamento elétrico (inspeção detalhada).
Em caso de sujeira	Limpeza (→ Capítulo 9.1).

Tabela 9

Modelos de relatórios → Manual de instruções do

- Executar os trabalhos de manutenção e as verificações de rotina de acordo com o protocolo.
- Registrar os trabalhos de manutenção em protocolo.

O sistema de ativação tem que ser verificado o mais tardar a cada 12 meses, se for usado como dispositivo de segurança, controle e de regulagem.

Nos turboacoplamentos com proteção contra explosão é necessário efetuar ainda os seguintes trabalhos de manutenção:

Intervalos de manutenção	Trabalho de manutenção
Em caso de sujeira ou acúmulo de poeira: os dispositivos que estejam em atmosferas potencialmente explosivas têm que ser limpos com regularidade. Os intervalos são definidos pela entidade usuária, de acordo com os impactos ambientais no local, p. ex., no caso de acúmulo de poeira de cerca de 0,20,5 mm ou superior.	Limpeza (→ Capítulo 9.1).

Tabela 10

ATENÇÃO

Perigo de explosão

Perigo de explosão devido ao incumprimento dos trabalhos de manutenção. É necessário o cumprimento dos trabalhos de acordo com o plano de manutenção, por forma a garantir uma operação devida no âmbito da proteção contra explosão.

 Remover de imediato eventuais deposições de poeiras inflamáveis dos dispositivos.

9.1 Limpeza exterior

NOTA

Danos materiais

Danos no BTS-Ex devido a limpeza externa incorreta e inadequada.

- Verificar se a caixa de material sintético do BTS-Ex e a junta de borracha da conexão dos cabos toleram o detergente usado!
- Não utilizar qualquer dispositivo de limpeza de alta pressão!
- Manusear as vedações com cuidado. Evitar jatos de água ou de ar comprimido.
- Se necessário, limpar o BTS-Ex com um solvente de graxa.

10 Descarte

Descarte da embalagem

Descartar o material da embalagem de acordo com as normas locais.

Descarte de fluidos de serviço

Ao efetuar o descarte, respeitar a respectiva legislação, bem como as indicações do fabricante ou fornecedor.

Descarte do BTS-Ex

Descartar o BTS-Ex de acordo com a legislação local.

Consulte a seguinte tabela para obter indicações específicas sobre o descarte de substâncias e materiais:

	Tipo de descarte		
Material/substância	Reciclagem	Lixo residual	Resíduos perigosos
Metais	х	-	-
Cabos	х	-	-
Vedações	-	х	-
Plásticos	x 1)	(x)	-
Equipamentos	-	-	x 1), 2)
Embalagem	х	-	-

Tabela 11

- 1) se possível
- 2) descartar de acordo com a folha de dados de segurança ou as indicações do fabricante

11 Falhas – Soluções, detecção de erros

ATENÇÃO

Perigo de ferimentos

Durante os trabalhos no dispositivo de comutação térmico sem contato, observar especialmente o → capítulo 5 (Segurança)!

ATENÇÃO

EX

Perigo de explosão

Não deve ser efetuada qualquer modificação em dispositivos que sejam usados em atmosferas potencialmente explosivas.

Não são permitidos reparos; tem que ser efetuada uma substituição.

A tabela seguinte irá ajudá-lo a detectar rapidamente a causa de eventuais falhas de operação e, se necessário, a proceder à respectiva resolução.

Falha de operação	Possível(eis) causa(s)	Solução	Consultar
LED verde desligada.	Dispositivo de leitura sem tensão de alimentação.	Aplicar a tensão de alimentação.	Capítulo 6.3
	Dispositivo de leitura com defeito.	Substituir o dispositivo de leitura.	
LED 1 amarelo (LED superior) com indicação errada.	Posição errada dos interruptores DIP.	Verificar a posição dos interruptores DIP.	Capítulo 7.2 Capítulo 7.3
	Detector de proximidade com polaridade invertida.	Verificar a ligação do detector de proximidade.	Capítulo 6.3
	A distância entre a cabeça do detector de proximidade e o elemento lógico é muito grande.	Ajustar a distância para 4 ± 1 mm.	Capítulo 6.3

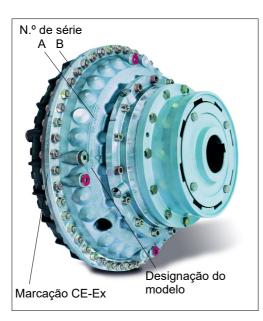
Falha de operação	Possível(eis) causa(s)	Solução	Consultar
LED 1 amarelo (LED superior) com indicação errada.	O console para o detector de proximidade não está suficientemente estável. É possível que as vibrações causem sinais de erro.	Estabilizar devidamente o console.	Capítulo 6.3
	Detector de proximidade com defeito.	Verificar o detector de proximidade e; se necessário, substituí-lo.	
	Elemento lógico com defeito.	Verificar o elemento lógico; e se necessário, substituí-lo.	
	Saída de relé I com defeito.	Verificar a saída de relé I.	
LED 2 amarelo (LED inferior) com indicação errada.	Saída de relé II com defeito.	Verificar a saída de relé II.	
LEDs vermelhos intermitentes.	Erro de hardware.	Verificar o aparelho.	
Enquanto a inibição de partida esteve ativa, ocorreu uma perda de fluido de serviço através dos parafusos fusíveis de segurança.	Foi selecionado um tempo de inibição de partida muito longo.	Reduzir o tempo de inibição da partida de forma que, terminado esse tempo, a rotação do turboacoplamento com o elemento lógico seja significativamente superior a 60 rpm.	
Terminado o tempo de inibição de partida, ocorre o vazamento de fluido de trabalho através dos parafusos fusíveis de segurança sem que o	As temperaturas nominais de ativação do elemento lógico e dos parafusos fusíveis não coincidem.	Entre em contato com a Voith Turbo.	Capítulo 12
BTS-Ex indique uma temperatura excessiva.	Elemento lógico com defeito.	Verificar o elemento lógico; e se necessário, substituí-lo.	

Contatar a Voith Turbo (→ Capítulo 12), em caso de falha de operação não contemplada nessa tabela.

Tabela 12

Para determinar a causa exata de um erro, podem ser efetuadas as seguintes medições pela respectiva ordem:

Medição	Resultado	Resolução de erros possível
Aplicar tensão de alimentação no dispositivo de leitura. Medir a tensão do circuito aberto e da corrente do curto-circuito na entrada NAMUR (bornes 1 e 3).	Claro desvio dos valores nominais: - Tensão de circuito aberto 8,0 V CC - Corrente do curto-circuito 8,0 mA	Dispositivo de leitura com defeito.
Conectar o detector de proximidade ao dispositivo de leitura. Medir o consumo de corrente do detector de proximidade sem atenuação.	Consumo de corrente > 6,0 mA ou < 2,1 mA	Detector de proximidade com defeito.
Ligar o detector de proximidade ao dispositivo de leitura. Medir o consumo do detector de proximidade com atenuação. Nota: O detector de proximidade pode ser atenuado, p. ex., através de uma placa metálica que se encontra imediatamente à frente da cabeça do detector de proximidade.	Consumo de corrente > 1,2 mA ou < 0,1 mA	Detector de proximidade com defeito.
Atenuar o detector de proximidade montado corretamente com o elemento lógico e sem que o turboacoplamento esteja muito quente.	Consumo de corrente > 1,2 mA e < 6,0 mA	Elemento lógico com defeito.


Tabela 13

12 Pedidos de informações, solicitação de um técnico e de peças de reposição

Em caso de

- Pedido de informações
- Solicitação de um montador
- Pedido de peças de reposição
- Colocações em operação

necessitamos de:

o nº de série e designação do tipo de turboacoplamento podem ser utilizados no BTS-Ex.

- → O n.º de série e a designação do modelo encontram-se na roda externa/caixa do acoplamento (A) ou ao nível (B) do turboacoplamento.
- → O n.º de série está gravado com números de impacto.
- → Os turboacoplamentos projetados para uso em atmosferas potencialmente explosivas apresentam a marcação CE-Ex ao nível do turboacoplamento.

Figura 10

Em caso de **solicitação de um técnico**, uma **colocação em operação** ou um **serviço** necessitamos ainda

- da indicação do local de instalação do turboacoplamento,
- de um parceiro de contato e do respectivo endereço,
- uma descrição da falha ocorrida.

Contacto
→ Página 2

Em caso de pedido de peças de reposição, necessitamos ainda do

endereço para envio das peças de reposição.

13 Informações sobre peças de reposição

NOTA

Não efetue quaisquer modificações e reequipamentos arbitrários! Não efetue quaisquer reequipamentos com equipamentos ou produtos de serviço de outros fabricantes!

A garantia perde a validade caso sejam efetuadas modificações ou conversões sem prévia autorização escrita da empresa Voith! Os direitos gerais perdem a validade!

 Uma conservação ou reparo especializados somente poderão ser garantidos pelo fabricante!

13.1 Elementos lógicos

Elementos lógicos do BTS-Ex				Anel de vedação	
Uso para tamanhos de turbo- acoplamentos	Dimensão da rosca	Temperatura nominal de ativação	Tipo de elemento lógico	N.º de material	N.º de material
		85 °C	Voith 85 °C	TCR.10672470	
		90 °C	Voith 90 °C	TCR.10642650	
		110 °C	Voith 110 °C	TCR.10642630	
366 - 650	M18x1,5	125 °C	Voith 125 °C	TCR.10499540	TCR.03658018
		140 °C	Voith 140 °C	TCR.10499550	
		160 °C	Voith 160 °C	TCR.10499560	
		180 °C	Voith 180 °C	TCR.10499570	
		85 °C	Voith 85 °C	TCR.11973940	
	M24x1,5	125 °C	Voith 125 °C	TCR.10488230	
750 - 1150		140 °C	Voith 140 °C	TCR.10653470	TCR.03658024
		160 °C	Voith 160 °C	TCR.10633550	
		180 °C	Voith 180 °C	TCR.10488220	

13.2 Detector de proximidade, flange de fixação

Tipo de detector de proximidade	N.º de material
NJ 10-22-N-E93-Y245590 (2 m)	201,04312710
NJ 10-22-N-E93-Y246868 (5 m)	201,04312810
NJ 10-22-N-E93-Y246869 (10 m)	201,04312910
Flange de fixação BF22	TCR.03668170

Tabela 15

13.3 Dispositivo de leitura

Tipo de dispositivo de leitura	N.º de material
KFD2-SR2-Ex2.W.SM	201,03905210

Tabela 16

14 Anexo

14.1 Declaração de Conformidade UE

Declaração de conformidade

Voith

Declaração de Conformidade UE

Nós,

J.M. Voith SE & Co. KG Voithstraße 1 74564 Crailsheim

declaramos no presente documento que a declaração de conformidade foi emitida sob nossa exclusiva responsabilidade e faz parte do seguinte módulo:

Designação: Dispositivo de comutação térmico sem contato para limitação da

temperatura máxima na superfície dos turboacoplamentos da Voith

Tipo: BTS-Ex

Números de fabrico: Conf. Documentação de expedição

O módulo é composto por:

1. Elemento lógico

		Exemplo de i	dentificação: Voith	140 °C ⟨₺	⟩∥ExiX	1234 5678		
	1.ª área:	2.ª área:	3.ª área:	4.ª á	rea:	5.ª área:	6. ^a	área:
	Α	В	С)	Е		F
	Voith	140 °C	€x II Ex i X			1234	5	5678
	Voith	140 °C	Œx∑ II	Ex	iΧ	1234	5	678
A B	B (2.ª superfície para carimbo) = Temperatura nominal de ativaç 85 °C 90 °C 100 °C 110 °				110 °C 180 °C			
С	(3.ª superfície para carimbo) = Identificaç√ExEx: II Ex i X							
D	(4.ª superfície para carimbo) = Identificação Ex: Reserva							
Ε	(5.ª superfície para carimbo) = número de série (cifras 1 até 4)							
F	(6.ª superfície para carimbo) = número de série (cifras 5 até 8)							

2. Detector de proximidade

NJ 10-22-N-E93-Y245590 NJ 10-22-N-E93-Y246868 NJ 10-22-N-E93-Y246869

3. Aparelho de leitura

Pepperl + Fuchs KFD2-SR2-Ex2.W.SM

O objeto acima descrito cumpre os regulamentos de harmonização relevantes da União Europeia:

Diretiva ATEX 2014/34/UE, 29.03.2014 | PT | Jornal Oficial da União Europeia L 96/309 Diretiva CEM 2014/30/EU, 29.03.2014 | PT | Jornal Oficial da União Europeia L 96/79

Foram aplicadas as seguintes normas harmonizadas (na totalidade ou em parte):

- IEC/EN 60079-0-2018
- EN 60079-11: 2012
- EN 60079-25: 2010
- EN ISO 80079-36:2016
- EN ISO 80079-37:2016
- EN ISO/IEC 80079-38:2016

Outras normas e especificações técnicas aplicadas:

• TRGS 727: 2016

O módulo pode ser utilizado em turboacoplamentos do fabricante como dispositivo de segurança, de controle e de regulação, nos termos do artigo 1, número 1, alínea b) da diretiva 2014/34/UE.

O próprio fabricante tem a exclusiva responsabilidade pela elaboração da presente Declaração de Conformidade.

Os documentos técnicos específicos podem ser solicitados aos responsáveis pela documentação técnica

J.M. Voith SE & Co. KG Sr. Bernhard Ludas Voithstraße 1 74564 Crailsheim.

Assinado por e em nome da J.M. Voith SE & Co. KG:

Satyavolu, Digitally signed by Satyavolu, Ravi Krishna Date: 2021.09.13 17:41:40 +02'00'

Crailsheim 13-09-2021 Ravi Krishna Satyavolu (Vice President CCE HDC)

Local Data Nome, função, assinatura

14.2 Detector de proximidade NJ 10-22-N-E93-Y245590 (2 m)

Voith N.º de material: 201.04312710

Manual de instruçõesPepperl+FuchsDados técnicosPepperl+FuchsDeclaração de conformidadePepperl+FuchsDeclaração do fabricantePepperl+Fuchs

Instruction Manual

1. Marking

Inductive sensor

NJ10-22-N-E93-Y245590

ATEX marking

IECEx marking

Ex ia IIC T6...T1 Gb

Ex ia IIIC T₂₀₀135°C Da

Ex ia I Mb

Pepperl+Fuchs Group

Lilienthalstraße 200, 68307 Mannheim, Germany

Internet: www.pepperl-fuchs.com

2. Validity

Specific processes and instructions in this instruction manual require special provisions to guarantee the safety of the operating personnel.

3. Target Group, Personnel

Responsibility for planning, assembly, commissioning, operation, maintenance, and dismounting lies with the plant operator.

The personnel must be appropriately trained and qualified in order to carry out mounting, installation, commissioning, operation, maintenance, and dismounting of the device. The trained and qualified personnel must have read and understood the instruction manual.

4. Reference to Further Documentation

Observe laws, standards, and directives applicable to the intended use and the operating location. Observe Directive 1999/92/EC in relation to hazardous areas.

The corresponding datasheets, manuals, declarations of conformity, EU-type examination certificates, certificates, and control drawings if applicable (see datasheet) are an integral part of this document. You can find this information under www.pepperl-fuchs.com.

For specific device information, scan the QR code on the device or enter the serial number in the serial number search at www.pepperl-fuchs.com Due to constant revisions, documentation is subject to permanent change. Please refer only to the most up-to-date version, which can be found under www.pepperl-fuchs.com.

5. Intended Use

The device is only approved for appropriate and intended use. Ignoring these instructions will void any warranty and absolve the manufacturer from any liability.

Technical data provided in the datasheet may be partly restrained by the information given in this instruction manual.

Use the device only within the specified ambient and operating conditions. The device is an electrical apparatus for hazardous areas.

The certificate applies only to the use of apparatus under atmospheric conditions.

If you use the device outside atmospheric conditions, consider that the permissible safety parameters should be reduced.

The device can be used in hazardous areas containing gas, vapor, and mist.

The device can be used in hazardous areas containing combustible dust. The device can be used in underground parts of mines as well as those parts of surface installations of such mines containing firedamp and/or combustible dust.

5.1. Requirements for Equipment Protection Level Gb

Refer to the relevant certificate to see the relationship between the connected circuit type, the maximum permitted ambient temperature, the effective inner reactances, and if applicable the surface temperature or the temperature class.

The suitability for use of the device at ambient temperatures >60 °C in conjunction with hot surfaces has been checked by the notified body.

5.2. Requirements for Equipment Protection Level Da

Refer to the relevant certificate to see the relationship between the connected circuit type, the maximum permitted ambient temperature, the effective inner reactances, and if applicable the surface temperature or the temperature class.

The suitability for use of the device at ambient temperatures >60 $^{\circ}$ C in conjunction with hot surfaces has been checked by the notified body.

5.3. Requirements for Equipment Protection Level Mb

Refer to the relevant certificate to see the relationship between the connected circuit type, the maximum permitted ambient temperature, the effective inner reactances, and if applicable the surface temperature or the temperature class.

The suitability for use of the device at ambient temperatures >60 °C in conjunction with hot surfaces has been checked by the notified body.

6. Improper Use

Protection of the personnel and the plant is not ensured if the device is not used according to its intended use.

7. Mounting and Installation

Observe the installation instructions according to IEC/EN 60079-14. Safety-relevant markings are found on the nameplate of the device or the nameplate supplied.

Attach the nameplate supplied in the immediate vicinity of the device. Attach the nameplate so that it is legible and indelible. Take the ambient conditions into account.

Do not mount a damaged or polluted device.

Mount the device so that it complies with the specified degree of protection according to IEC/EN 60529.

If you use the device in environments subject to adverse conditions, you must protect the device accordingly.

Do not remove the warning markings.

7.1. Requirements for Usage as Intrinsically Safe Apparatus

When connecting intrinsically safe devices with intrinsically safe circuits of associated apparatus, observe the maximum peak values with regard to explosion protection (verification of intrinsic safety). Observe the standards IEC/EN 60079-14 or IEC/EN 60079-25.

The type of protection is determined by the connected intrinsically safe circuit.

7.2. Specific Conditions of Use

Mount the device so that it complies with the specified degree of protection according to IEC/EN 60529.

7.2.1. Requirements in Relation to Electrostatics

Information on electrostatic hazards can be found in the technical specification IEC/TS 60079-32-1.

Do not mount the supplied nameplate in areas that can be electrostatically charged.

You can reduce the electrostatic hazards by minimizing the generation of static electricity. For example, you have the following options to minimize the generation of static electricity:

- · Control the environmental humidity.
- Protect the device from direct airflow.
- Ensure a continuous drain off of the electrostatic charges.

7.2.1.1. Requirements for Equipment Protection Level Da

Avoid electrostatic charges which could result in electrostatic discharges while installing, operating, or maintaining the device.

7.2.2. Requirements to Mechanics

7.2.2.1. Requirements for Usage as Intrinsically Safe Apparatus

Protect the device from impact effects by mounting in a surrounding enclosure if it is used in the temperature range between the minimum permissible ambient temperature and -20 $^{\circ}$ C.

Mount the device with at least a degree of protection of IP20 according to IEC/EN 60529.

8. Operation, Maintenance, Repair

Observe the specific conditions of use.

Safety-relevant markings are found on the nameplate of the device or the nameplate supplied.

Do not use a damaged or polluted device.

Do not repair, modify, or manipulate the device.

Modifications are permitted only if approved in this instruction manual and in the device-related documentation.

If there is a defect, always replace the device with an original device.

Do not remove the warning markings.

8.1. Requirements for Usage as Intrinsically Safe Apparatus

Only operate the device with intrinsically safe circuits according to IEC/EN 60079-11.

The type of protection is determined by the connected intrinsically safe circuit.

8.2. Requirements for Equipment Protection Level Gb

Observe the temperature table for the corresponding equipment protection level in the certificate.

Also observe the maximum permissible ambient temperature stated in the technical data. Keep to the lower of the two values.

8.3. Requirements for Equipment Protection Level Da

Observe the temperature table for the corresponding equipment protection level in the certificate.

Also observe the maximum permissible ambient temperature stated in the technical data. Keep to the lower of the two values.

8.4. Requirements for Equipment Protection Level Mb

Observe the temperature table for the corresponding equipment protection level in the certificate.

Also observe the maximum permissible ambient temperature stated in the technical data. Keep to the lower of the two values.

9. Delivery, Transport, Disposal

Check the packaging and contents for damage.

Check if you have received every item and if the items received are the ones you ordered.

Keep the original packaging. Always store and transport the device in the original packaging.

Store the device in a clean and dry environment. The permitted ambient conditions must be considered, see datasheet.

The device, built-in components, packaging, and any batteries contained within must be disposed in compliance with the applicable laws and guidelines of the respective country.

10. National Ex approvals

EAC-EX:	TC RU C-DE.AA87.B.00394

11. Safety-Relevant Technical Data

11.1. Equipment protection level Gb

Type of protection	Intrinsic safety
CE marking	C€ -0102
Certificates	
Appropriate type	NJ10-22-N
ATEX certificate	PTB 00 ATEX 2048 X
ATEX marking	🖫 II 2G Ex ia IIC T6T1 Gb
ATEX standards	EN IEC 60079-0:2018-07, EN 60079-11:2012-01
IECEx certificate	IECEx PTB 11.0037X
IECEx marking	Ex ia IIC T6T1 Gb
IECEx standards	IEC 60079-0:2017-12, IEC 60079-11:2011-06
Effective internal	max. 130 nF
capacitance C _i	A cable length of 10 m is considered.
Effective internal	max. 100 μH
inductance L _i	A cable length of 10 m is considered.

Maximum permissible ambient temperature in °C	Also observe the maximum permissible ambient temperature stated in the general technical data. Keep to the lower of the two values.
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 34 \text{ mW}$
	T6: 73 °C
	T5: 88 °C
	T4: 100 °C
	T3: 100 °C
	T2: 100 °C
	T1: 100 °C
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 64 \text{ mW}$
	T6: 69 °C
	T5: 84 °C
	T4: 100 °C
	T3: 100 °C
	T2: 100 °C
	T1: 100 °C
	$U_i = 16 \text{ V}, I_i = 52 \text{ mA}, P_i = 169 \text{ mW}$
	T6: 51 °C
	T5: 66 °C
	T4: 80 °C
	T3: 80 °C
	T2: 80 °C
	T1: 80 °C
	$U_i = 16 \text{ V}, I_i = 76 \text{ mA}, P_i = 242 \text{ mW}$
	T6: 39 °C
	T5: 54 °C
	T4: 61 °C
	T3: 61 °C
	T2: 61 °C
	T1: 61 °C

11.2. Equipment protection level Da

Type of protection	Intrinsic safety
CE marking	C€ -0102
Certificates	
Appropriate type	NJ10-22-N
ATEX certificate	PTB 00 ATEX 2048 X
ATEX marking	
ATEX standards	EN IEC 60079-0:2018-07, EN 60079-11:2012-01
IECEx certificate	IECEx PTB 11.0037X
IECEx marking	Ex ia IIIC T ₂₀₀ 135°C Da
IECEx standards	IEC 60079-0:2017-12, IEC 60079-11:2011-06
Effective internal	max. 130 nF
capacitance C _i	A cable length of 10 m is considered.
Effective internal	max. 100 μH
inductance L _i	A cable length of 10 m is considered.
Maximum permissible ambient temperature in °C	Also observe the maximum permissible ambient temperature stated in the general technical data. Keep to the lower of the two values.
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 34 \text{ mW}$
	100 °C
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 64 \text{ mW}$
	100 °C
	$U_i = 16 \text{ V}, I_i = 52 \text{ mA}, P_i = 169 \text{ mW}$
	62 °C

11.3. Equipment protection level Mb

Type of protection	Intrinsic safety
Certificates	
Appropriate type	NJ10-22-N
IECEx certificate	IECEx PTB 11.0037X
IECEx marking	Ex ia I Mb

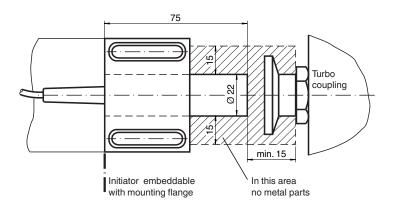
/ 2021-08 2/3

IECEx standards	IEC 60079-0:2017-12, IEC 60079-11:2011-06
Effective internal	max. 130 nF
capacitance C _i	A cable length of 10 m is considered.
Effective internal	max. 100 μH
inductance L _i	A cable length of 10 m is considered.
Maximum permissible ambient temperature in °C	Also observe the maximum permissible ambient temperature stated in the general technical data. Keep to the lower of the two values.
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 34 \text{ mW}$
	100 °C
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 64 \text{ mW}$
	100 °C
	$U_i = 16 \text{ V}, I_i = 52 \text{ mA}, P_i = 169 \text{ mW}$
	80 °C
	$U_i = 16 \text{ V}, I_i = 76 \text{ mA}, P_i = 242 \text{ mW}$
	61 °C

/2021-08 3/3

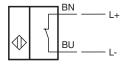
Inductive sensor NJ10-22-N-E93-Y245590

Comfort series



Dimensions

Technical Data


General specifications

Switching function		No constitue of a second (AIO)
		Normally closed (NC)
Output type		NAMUR
Rated operating distance	Sn	10 mm
Installation		non-flush
Assured operating distance	Sa	0 10 mm
Output type		2-wire
Nominal ratings		
Nominal voltage	Uo	8.2 V (R_i approx. 1 $k\Omega$)
Switching frequency	f	0 1000 Hz
Hysteresis	Н	typ. 5 %
Current consumption		
Measuring plate not detected		min. 3 mA
Measuring plate detected		≤ 1 mA
Functional safety related parameters		
MTTF _d		3602 a
Mission Time (T _M)		20 a
Diagnostic Coverage (DC)		0 %
Compliance with standards and directives		
Standard conformity		
NAMUR		EN 60947-5-6:2000 IEC 60947-5-6:1999

Release date: 2021-06-21 Date of issue: 2021-06-21 Filename: 70133281_eng.pdf

Technical Data		
Standards		EN 60947-5-2:2007 EN 60947-5-2/A1:2012 IEC 60947-5-2:2007 IEC 60947-5-2 AMD 1:2012
Approvals and certificates		
IECEx approval		
Equipment protection level Gb		IECEx PTB 11.0037X
Equipment protection level Da		IECEx PTB 11.0037X
Equipment protection level Mb		IECEx PTB 11.0037X
ATEX approval		
Equipment protection level Gb		PTB 00 ATEX 2048 X
Equipment protection level Da		PTB 00 ATEX 2048 X
EAC conformity		TR CU 012/2011
UL approval		cULus Listed, General Purpose
Ambient conditions		
Ambient temperature		-40 100 °C (-40 212 °F) Also observe the maximum permissible ambient temperature stated in the data for application in connection with hazardous areas. Keep to the lower of the two values.
Mechanical specifications		
Connection type		cable
Housing material		PBT
Sensing face		PBT
Degree of protection		IP68
Cable		
Cable diameter		6 mm ± 0.2 mm
Bending radius		> 10 x cable diameter
Material		silicone
Core cross-section		0.75 mm ²
Length	L	2 m
General information		
Use in the hazardous area		see instruction manuals

Connection

EU-Declaration of conformity

en/de

EU-Konformitätserklärung

Pepperl+Fuchs SE Lilienthalstraße 200 68307 Mannheim Germany Phone +49 621 776-0 Fax +49 621 776-1000

Phone +49 621 776-0 No. / Nr.: DOC-5073 Fax +49 621 776-1000 Date / Datum: 2021-07-21

Copyright Pepperl+Fuchs www.pepperl-fuchs.com

Declaration of conformity / Konformitätserklärung

We, Pepperl+Fuchs SE declare under our sole responsibility that the **products** listed below are in conformity with the listed **European Directives** and **standards**.

Die Pepperl+Fuchs SE erklärt hiermit in alleiniger Verantwortung, dass die unten gelisteten **Produkte** den genannten **Europäischen Richtlinien** und **Normen** entsprechen.

Products / Produkte

Product / Produkt	Item number	Description / Be- schreibung
NJ2-12GK-N-Y40110	70133235	Inductive sensor
NJ2-12GK-N-10M-Y89552	70133232	Inductive sensor
NJ2-12GK-N-25M	70133233	Inductive sensor
NJ2-12GK-N-5M	70133234	Inductive sensor
NJ2-12GM-N-Y08766	70133239	Inductive sensor
NJ2-12GM-N-Y10638	70133240	Inductive sensor
NJ2-14GM-N-C50	70133255	Inductive sensor
NJ2-14GM-N-V1-Y19784	70133256	Inductive sensor
NJ2,5-14GM-N-V1-Y21146	70133054	Inductive sensor
NJ25-50-N	70133327	Inductive sensor
NJ10-30GK-N-5M	70133311	Inductive sensor
NJ25-50-N-15M	70133328	Inductive sensor
NJ15-30GKK-N	70133073	Inductive sensor
NJ25-50-N-5M	70133329	Inductive sensor
NJ15-30GK-N	70133317	Inductive sensor
NJ15-30GK-N-Y08943	70133320	Inductive sensor
NJ15-30GK-N-10M	70133074	Inductive sensor
NJ15-30GK-N-20M	70133318	Inductive sensor
NJ15-30GK-N-30M	70133319	Inductive sensor
NJ20-40-N	70133323	Inductive sensor
NJ2-11-N-G-Y102883	70133198	Inductive sensor
NJ2-11-N-G-910	70133196	Inductive sensor
NJ10-22-N	70133280	Inductive sensor
NJ10-22-N-E93-Y245590	70133281	Inductive sensor
NJ10-22-N-E93-Y246868	70133282	Inductive sensor
NJ10-22-N-E93-Y246869	70133283	Inductive sensor
NJ10-22-N-G	70133284	Inductive sensor

Product / Produkt	Item number	Description / Be- schreibung
NJ10-22-N-G-5M	70133285	Inductive sensor
NJ10-30GKK-N	70133308	Inductive sensor
NJ10-30GK-N	70133309	Inductive sensor
NJ10-30GK-N-15M	70133310	Inductive sensor
NJ2-11-N-Y14235	70133202	Inductive sensor
NJ2-12GK-N	70133049	Inductive sensor

■ Directives and Standards / Richtlinien und Normen

EU-Directive	Standards
EU-Richtlinie	Normen
ATEX 2014/34/EU	EN 60079-11:2012-01
(L96/309-356)	EN IEC 60079-0:2018-07
EMC 2014/30/EU (L96/79-106)	EN 60947-5-2/A1:2012-11 EN 60947-5-2:2007-12 EN 60947-5-6:2000-01 EN IEC 60947-5-2:2020-03
RoHS 2011/65/EU (L174/88-110)	EN IEC 63000:2018-12

Affixed CE Marking / Angebrachte CE-Kennzeichnung

Signatures / Unterschriften

Mannheim. 2021-07-21

i.V. Ulrich Ehrenfried

Head of Innovation Unit Electromagnetic Global Product Manager Sensors

i.V. Tobias Dittmer

ANNEX ATEX

Notified Body QM-System / Notifizierte Stelle des QM-Systems Physikalisch Technische Bundesanstalt (0102) Bundesallee 100 38116 Braunschweig Germany

Marking and Certificates / Kennzeichnung und Zertifikate

Marking	Certificate	Issuer ID
Kennzeichnung	Zertifikat	Aussteller ID
	PTB 00 ATEX 2048 X	

Key for Issuer ID / Schlüssel zur Aussteller ID

ito, io iocaci iz, comacoci za riacotone iz	
ID	Issuer / Aussteller
0102	Physikalisch Technische Bundesanstalt Bundesallee 100 38116 Braunschweig Germany

DOC-5073 / 2021-07-21 1/1

Your automation, our passion.

Pepperl+Fuchs SE • 68307 Mannheim • Germany

Customer: DE164472

J.M. Voith SE & Co. KG | VTA

Mannheim, November 24, 2023

We, Pepperl+Fuchs SE at 68307 Mannheim hereby declare that the listed product/s have been produced conform to the Regulation (EC) No 1907/2006 (REACH). Used SVHC according Article 33 of the regulation are noted.

Manufacturer Declaration

Item/s			
Item Number	Item Description	Your Item No	
SCIP No.			
SVHC			

70133281 NJ10-22-N-E93-Y245590

1a8b87c8-f50d-4cf1-b772-699892f52066

-4,4'-isopropylidenediphenol (Bisphenol A), EC 201-245-8,

CAS 80-05-7

-Lead (Pb) EC 231-100-4, CAS 7439-92-1

This document is generated automatically and valid without signature. The document represents the present status of knowledge.

Department Global Compliance 24.11.2023 Mannheim

14.3 Detector de proximidade NJ 10-22-N-E93-Y246868 (5 m)

Voith N.º de material: 201.04312810

Manual de instruções Pepperl+Fuchs
Dados técnicos Pepperl+Fuchs
Declaração de conformidade Pepperl+Fuchs
Declaração do fabricante Pepperl+Fuchs

Instruction Manual

1. Marking

Inductive sensor

NJ10-22-N-E93-Y246868

ATEX marking

IECEx marking

Ex ia IIC T6...T1 Gb

Ex ia IIIC T₂₀₀135°C Da

Ex ia I Mb

Pepperl+Fuchs Group

Lilienthalstraße 200, 68307 Mannheim, Germany

Internet: www.pepperl-fuchs.com

2. Validity

Specific processes and instructions in this instruction manual require special provisions to guarantee the safety of the operating personnel.

3. Target Group, Personnel

Responsibility for planning, assembly, commissioning, operation, maintenance, and dismounting lies with the plant operator.

The personnel must be appropriately trained and qualified in order to carry out mounting, installation, commissioning, operation, maintenance, and dismounting of the device. The trained and qualified personnel must have read and understood the instruction manual.

4. Reference to Further Documentation

Observe laws, standards, and directives applicable to the intended use and the operating location. Observe Directive 1999/92/EC in relation to hazardous areas.

The corresponding datasheets, manuals, declarations of conformity, EU-type examination certificates, certificates, and control drawings if applicable (see datasheet) are an integral part of this document. You can find this information under www.pepperl-fuchs.com.

For specific device information, scan the QR code on the device or enter the serial number in the serial number search at www.pepperl-fuchs.com Due to constant revisions, documentation is subject to permanent change. Please refer only to the most up-to-date version, which can be found under www.pepperl-fuchs.com.

5. Intended Use

The device is only approved for appropriate and intended use. Ignoring these instructions will void any warranty and absolve the manufacturer from any liability.

Technical data provided in the datasheet may be partly restrained by the information given in this instruction manual.

Use the device only within the specified ambient and operating conditions. The device is an electrical apparatus for hazardous areas.

The certificate applies only to the use of apparatus under atmospheric conditions.

If you use the device outside atmospheric conditions, consider that the permissible safety parameters should be reduced.

The device can be used in hazardous areas containing gas, vapor, and mist.

The device can be used in hazardous areas containing combustible dust. The device can be used in underground parts of mines as well as those parts of surface installations of such mines containing firedamp and/or combustible dust.

5.1. Requirements for Equipment Protection Level Gb

Refer to the relevant certificate to see the relationship between the connected circuit type, the maximum permitted ambient temperature, the effective inner reactances, and if applicable the surface temperature or the temperature class.

The suitability for use of the device at ambient temperatures >60 °C in conjunction with hot surfaces has been checked by the notified body.

5.2. Requirements for Equipment Protection Level Da

Refer to the relevant certificate to see the relationship between the connected circuit type, the maximum permitted ambient temperature, the effective inner reactances, and if applicable the surface temperature or the temperature class.

The suitability for use of the device at ambient temperatures >60 $^{\circ}$ C in conjunction with hot surfaces has been checked by the notified body.

5.3. Requirements for Equipment Protection Level Mb

Refer to the relevant certificate to see the relationship between the connected circuit type, the maximum permitted ambient temperature, the effective inner reactances, and if applicable the surface temperature or the temperature class.

The suitability for use of the device at ambient temperatures >60 °C in conjunction with hot surfaces has been checked by the notified body.

6. Improper Use

Protection of the personnel and the plant is not ensured if the device is not used according to its intended use.

7. Mounting and Installation

Observe the installation instructions according to IEC/EN 60079-14. Safety-relevant markings are found on the nameplate of the device or the nameplate supplied.

Attach the nameplate supplied in the immediate vicinity of the device. Attach the nameplate so that it is legible and indelible. Take the ambient conditions into account.

Do not mount a damaged or polluted device.

Mount the device so that it complies with the specified degree of protection according to IEC/EN 60529.

If you use the device in environments subject to adverse conditions, you must protect the device accordingly.

Do not remove the warning markings.

7.1. Requirements for Usage as Intrinsically Safe Apparatus

When connecting intrinsically safe devices with intrinsically safe circuits of associated apparatus, observe the maximum peak values with regard to explosion protection (verification of intrinsic safety). Observe the standards IEC/EN 60079-14 or IEC/EN 60079-25.

The type of protection is determined by the connected intrinsically safe circuit.

7.2. Specific Conditions of Use

Mount the device so that it complies with the specified degree of protection according to IEC/EN 60529.

7.2.1. Requirements in Relation to Electrostatics

Information on electrostatic hazards can be found in the technical specification IEC/TS 60079-32-1.

Do not mount the supplied nameplate in areas that can be electrostatically charged.

You can reduce the electrostatic hazards by minimizing the generation of static electricity. For example, you have the following options to minimize the generation of static electricity:

- · Control the environmental humidity.
- Protect the device from direct airflow.
- Ensure a continuous drain off of the electrostatic charges.

7.2.1.1. Requirements for Equipment Protection Level Da

Avoid electrostatic charges which could result in electrostatic discharges while installing, operating, or maintaining the device.

7.2.2. Requirements to Mechanics

7.2.2.1. Requirements for Usage as Intrinsically Safe Apparatus

Protect the device from impact effects by mounting in a surrounding enclosure if it is used in the temperature range between the minimum permissible ambient temperature and -20 $^{\circ}$ C.

Mount the device with at least a degree of protection of IP20 according to IEC/EN 60529.

8. Operation, Maintenance, Repair

Observe the specific conditions of use.

Safety-relevant markings are found on the nameplate of the device or the nameplate supplied.

Do not use a damaged or polluted device.

Do not repair, modify, or manipulate the device.

Modifications are permitted only if approved in this instruction manual and in the device-related documentation.

If there is a defect, always replace the device with an original device.

Do not remove the warning markings.

8.1. Requirements for Usage as Intrinsically Safe Apparatus

Only operate the device with intrinsically safe circuits according to IEC/EN 60079-11.

The type of protection is determined by the connected intrinsically safe circuit.

8.2. Requirements for Equipment Protection Level Gb

Observe the temperature table for the corresponding equipment protection level in the certificate.

Also observe the maximum permissible ambient temperature stated in the technical data. Keep to the lower of the two values.

8.3. Requirements for Equipment Protection Level Da

Observe the temperature table for the corresponding equipment protection level in the certificate.

Also observe the maximum permissible ambient temperature stated in the technical data. Keep to the lower of the two values.

8.4. Requirements for Equipment Protection Level Mb

Observe the temperature table for the corresponding equipment protection level in the certificate.

Also observe the maximum permissible ambient temperature stated in the technical data. Keep to the lower of the two values.

9. Delivery, Transport, Disposal

Check the packaging and contents for damage.

Check if you have received every item and if the items received are the ones you ordered.

Keep the original packaging. Always store and transport the device in the original packaging.

Store the device in a clean and dry environment. The permitted ambient conditions must be considered, see datasheet.

The device, built-in components, packaging, and any batteries contained within must be disposed in compliance with the applicable laws and guidelines of the respective country.

10. National Ex approvals

EAC-EX:	TC RU C-DE.AA87.B.00394

11. Safety-Relevant Technical Data

11.1. Equipment protection level Gb

Type of protection	Intrinsic safety
CE marking	C€ -0102
Certificates	
Appropriate type	NJ10-22-N
ATEX certificate	PTB 00 ATEX 2048 X
ATEX marking	🖫 II 2G Ex ia IIC T6T1 Gb
ATEX standards	EN IEC 60079-0:2018-07, EN 60079-11:2012-01
IECEx certificate	IECEx PTB 11.0037X
IECEx marking	Ex ia IIC T6T1 Gb
IECEx standards	IEC 60079-0:2017-12, IEC 60079-11:2011-06
Effective internal	max. 130 nF
capacitance C _i	A cable length of 10 m is considered.
Effective internal	max. 100 μH
inductance L _i	A cable length of 10 m is considered.

Maximum permissible ambient temperature in °C	Also observe the maximum permissible ambient temperature stated in the general technical data. Keep to the lower of the two values.
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 34 \text{ mW}$
	T6: 73 °C
	T5: 88 °C
	T4: 100 °C
	T3: 100 °C
	T2: 100 °C
	T1: 100 °C
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 64 \text{ mW}$
	T6: 69 °C
	T5: 84 °C
	T4: 100 °C
	T3: 100 °C
	T2: 100 °C
	T1: 100 °C
	$U_i = 16 \text{ V}, I_i = 52 \text{ mA}, P_i = 169 \text{ mW}$
	T6: 51 °C
	T5: 66 °C
	T4: 80 °C
	T3: 80 °C
	T2: 80 °C
	T1: 80 °C
	$U_i = 16 \text{ V}, I_i = 76 \text{ mA}, P_i = 242 \text{ mW}$
	T6: 39 °C
	T5: 54 °C
	T4: 61 °C
	T3: 61 °C
	T2: 61 °C
	T1: 61 °C

11.2. Equipment protection level Da

Type of protection	Intrinsic safety
CE marking	C€ -0102
Certificates	
Appropriate type	NJ10-22-N
ATEX certificate	PTB 00 ATEX 2048 X
ATEX marking	
ATEX standards	EN IEC 60079-0:2018-07, EN 60079-11:2012-01
IECEx certificate	IECEx PTB 11.0037X
IECEx marking	Ex ia IIIC T ₂₀₀ 135°C Da
IECEx standards	IEC 60079-0:2017-12, IEC 60079-11:2011-06
Effective internal	max. 130 nF
capacitance C _i	A cable length of 10 m is considered.
Effective internal	max. 100 μH
inductance L _i	A cable length of 10 m is considered.
Maximum permissible ambient temperature in °C	Also observe the maximum permissible ambient temperature stated in the general technical data. Keep to the lower of the two values.
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 34 \text{ mW}$
	100 °C
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 64 \text{ mW}$
	100 °C
	$U_i = 16 \text{ V}, I_i = 52 \text{ mA}, P_i = 169 \text{ mW}$
	62 °C

11.3. Equipment protection level Mb

Type of protection	Intrinsic safety
Certificates	
Appropriate type	NJ10-22-N
IECEx certificate	IECEx PTB 11.0037X
IECEx marking	Ex ia I Mb

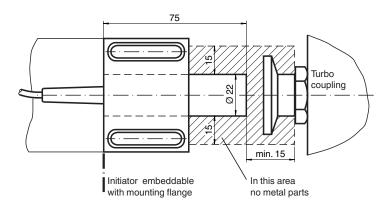
/ 2021-08 2/3

IECEx standards	IEC 60079-0:2017-12, IEC 60079-11:2011-06
Effective internal	max. 130 nF
capacitance C _i	A cable length of 10 m is considered.
Effective internal	max. 100 μH
inductance L _i	A cable length of 10 m is considered.
Maximum permissible ambient temperature in °C	Also observe the maximum permissible ambient temperature stated in the general technical data. Keep to the lower of the two values.
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 34 \text{ mW}$
	100 °C
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 64 \text{ mW}$
	100 °C
	$U_i = 16 \text{ V}, I_i = 52 \text{ mA}, P_i = 169 \text{ mW}$
	80 °C
	$U_i = 16 \text{ V}, I_i = 76 \text{ mA}, P_i = 242 \text{ mW}$
	61 °C

/2021-08 3/3

Inductive sensor NJ10-22-N-E93-Y246868

Comfort series



Dimensions

Technical Data

General specifications

Switching function		No constitue of a second (AIO)
		Normally closed (NC)
Output type		NAMUR
Rated operating distance	Sn	10 mm
Installation		non-flush
Assured operating distance	Sa	0 10 mm
Output type		2-wire
Nominal ratings		
Nominal voltage	Uo	8.2 V (R_i approx. 1 $k\Omega$)
Switching frequency	f	0 1000 Hz
Hysteresis	Н	typ. 5 %
Current consumption		
Measuring plate not detected		min. 3 mA
Measuring plate detected		≤ 1 mA
Functional safety related parameters		
MTTF _d		3602 a
Mission Time (T _M)		20 a
Diagnostic Coverage (DC)		0 %
Compliance with standards and directives		
Standard conformity		
NAMUR		EN 60947-5-6:2000 IEC 60947-5-6:1999

Release date: 2021-06-21 Date of issue: 2021-06-21 Filename: 70133282_eng.pdf

Technical Data	
Standards	EN 60947-5-2:2007 EN 60947-5-2/A1:2012 IEC 60947-5-2:2007 IEC 60947-5-2 AMD 1:2012
Approvals and certificates	
IECEx approval	
Equipment protection level Gb	IECEx PTB 11.0037X
Equipment protection level Da	IECEx PTB 11.0037X
Equipment protection level Mb	IECEx PTB 11.0037X
ATEX approval	
Equipment protection level Gb	PTB 00 ATEX 2048 X
Equipment protection level Da	PTB 00 ATEX 2048 X
EAC conformity	TR CU 012/2011
UL approval	cULus Listed, General Purpose
Ambient conditions	
Ambient temperature	-40 100 °C (-40 212 °F) Also observe the maximum permissible ambient temperature stated in the data for application in connection with hazardous areas. Keep to the lower of the two values.
Mechanical specifications	
Connection type	cable
Housing material	PBT
Sensing face	PBT
Degree of protection	IP68
Cable	
Cable diameter	6 mm ± 0.2 mm
Bending radius	> 10 x cable diameter
Material	silicone
Core cross-section	0.75 mm ²
Length	L 5 m
General information	
Use in the hazardous area	see instruction manuals

Connection

EU-Declaration of conformity

en/de

EU-Konformitätserklärung

Pepperl+Fuchs SE Lilienthalstraße 200 68307 Mannheim Germany Phone +49 621 776-0 Fax +49 621 776-1000

Phone +49 621 776-0 No. / Nr.: DOC-5073 Fax +49 621 776-1000 Date / Datum: 2021-07-21

Copyright Pepperl+Fuchs www.pepperl-fuchs.com

Declaration of conformity / Konformitätserklärung

We, Pepperl+Fuchs SE declare under our sole responsibility that the **products** listed below are in conformity with the listed **European Directives** and **standards**.

Die Pepperl+Fuchs SE erklärt hiermit in alleiniger Verantwortung, dass die unten gelisteten **Produkte** den genannten **Europäischen Richtlinien** und **Normen** entsprechen.

Products / Produkte

Product / Produkt	Item number Description / Be- schreibung	
NJ2-12GK-N-Y40110	70133235	Inductive sensor
NJ2-12GK-N-10M-Y89552	70133232	Inductive sensor
NJ2-12GK-N-25M	70133233	Inductive sensor
NJ2-12GK-N-5M	70133234	Inductive sensor
NJ2-12GM-N-Y08766	70133239	Inductive sensor
NJ2-12GM-N-Y10638	70133240	Inductive sensor
NJ2-14GM-N-C50	70133255	Inductive sensor
NJ2-14GM-N-V1-Y19784	70133256	Inductive sensor
NJ2,5-14GM-N-V1-Y21146	70133054	Inductive sensor
NJ25-50-N	70133327	Inductive sensor
NJ10-30GK-N-5M	70133311	Inductive sensor
NJ25-50-N-15M	70133328	Inductive sensor
NJ15-30GKK-N	70133073	Inductive sensor
NJ25-50-N-5M	70133329	Inductive sensor
NJ15-30GK-N	70133317	Inductive sensor
NJ15-30GK-N-Y08943	70133320	Inductive sensor
NJ15-30GK-N-10M	70133074	Inductive sensor
NJ15-30GK-N-20M	70133318	Inductive sensor
NJ15-30GK-N-30M	70133319	Inductive sensor
NJ20-40-N	70133323	Inductive sensor
NJ2-11-N-G-Y102883	70133198	Inductive sensor
NJ2-11-N-G-910	70133196	Inductive sensor
NJ10-22-N	70133280	Inductive sensor
NJ10-22-N-E93-Y245590	70133281	Inductive sensor
NJ10-22-N-E93-Y246868	70133282	Inductive sensor
NJ10-22-N-E93-Y246869	70133283	Inductive sensor
NJ10-22-N-G	70133284	Inductive sensor

Product / Produkt	Item number	Description / Be- schreibung
NJ10-22-N-G-5M	70133285	Inductive sensor
NJ10-30GKK-N	70133308	Inductive sensor
NJ10-30GK-N	70133309	Inductive sensor
NJ10-30GK-N-15M	70133310	Inductive sensor
NJ2-11-N-Y14235	70133202	Inductive sensor
NJ2-12GK-N	70133049	Inductive sensor

■ Directives and Standards / Richtlinien und Normen

EU-Directive	Standards
EU-Richtlinie	Normen
ATEX 2014/34/EU	EN 60079-11:2012-01
(L96/309-356)	EN IEC 60079-0:2018-07
EMC 2014/30/EU (L96/79-106)	EN 60947-5-2/A1:2012-11 EN 60947-5-2:2007-12 EN 60947-5-6:2000-01 EN IEC 60947-5-2:2020-03
RoHS 2011/65/EU (L174/88-110)	EN IEC 63000:2018-12

Affixed CE Marking / Angebrachte CE-Kennzeichnung

Signatures / Unterschriften

Mannheim. 2021-07-21

i.V. Ulrich Ehrenfried

Head of Innovation Unit Electromagnetic Global Product Manager Sensors

i.V. Tobias Dittmer

ANNEX ATEX

Notified Body QM-System / Notifizierte Stelle des QM-Systems Physikalisch Technische Bundesanstalt (0102) Bundesallee 100 38116 Braunschweig Germany

Marking and Certificates / Kennzeichnung und Zertifikate

Marking	Certificate	Issuer ID
Kennzeichnung	Zertifikat	Aussteller ID
	PTB 00 ATEX 2048 X	

Key for Issuer ID / Schlüssel zur Aussteller ID

1107 101 10001	10, 10, 10000 12, 00, 10000 10, 10000 10		
ID	Issuer / Aussteller		
0102	Physikalisch Technische Bundesanstalt Bundesallee 100 38116 Braunschweig Germany		

DOC-5073 / 2021-07-21 1/1

Your automation, our passion.

Pepperl+Fuchs SE • 68307 Mannheim • Germany

Customer: DE164472

J.M. Voith SE & Co. KG | VTA

Mannheim, November 24, 2023

We, Pepperl+Fuchs SE at 68307 Mannheim hereby declare that the listed product/s have been produced conform to the Regulation (EC) No 1907/2006 (REACH). Used SVHC according Article 33 of the regulation are noted.

Manufacturer Declaration

Item/s			
Item Number	Item Description	Your Item No	
SCIP No.			
SVHC			

70133282 NJ10-22-N-E93-Y246868

2cf50ea3-9289-4d6e-87b2-1e566cbb10ed

-4,4'-isopropylidenediphenol (Bisphenol A), EC 201-245-8,

CAS 80-05-7

-Lead (Pb) EC 231-100-4, CAS 7439-92-1

This document is generated automatically and valid without signature. The document represents the present status of knowledge.

Department Global Compliance 24.11.2023 Mannheim

14.4 Detector de proximidade NJ 10-22-N-E93-Y246869 (10 m)

Voith N.º de material: 201.04312910

Manual de instruçõesPepperl+FuchsDados técnicosPepperl+FuchsDeclaração de conformidadePepperl+FuchsDeclaração do fabricantePepperl+Fuchs

Instruction Manual

1. Marking

Inductive sensor

NJ10-22-N-E93-Y246869

ATEX marking

IECEx marking

Ex ia IIC T6...T1 Gb

Ex ia IIIC T₂₀₀135°C Da

Ex ia I Mb

Pepperl+Fuchs Group

Lilienthalstraße 200, 68307 Mannheim, Germany

Internet: www.pepperl-fuchs.com

2. Validity

Specific processes and instructions in this instruction manual require special provisions to guarantee the safety of the operating personnel.

3. Target Group, Personnel

Responsibility for planning, assembly, commissioning, operation, maintenance, and dismounting lies with the plant operator.

The personnel must be appropriately trained and qualified in order to carry out mounting, installation, commissioning, operation, maintenance, and dismounting of the device. The trained and qualified personnel must have read and understood the instruction manual.

4. Reference to Further Documentation

Observe laws, standards, and directives applicable to the intended use and the operating location. Observe Directive 1999/92/EC in relation to hazardous areas.

The corresponding datasheets, manuals, declarations of conformity, EUtype examination certificates, certificates, and control drawings if applicable (see datasheet) are an integral part of this document. You can find this information under www.pepperl-fuchs.com.

For specific device information, scan the QR code on the device or enter the serial number in the serial number search at www.pepperl-fuchs.com Due to constant revisions, documentation is subject to permanent change. Please refer only to the most up-to-date version, which can be found under www.pepperl-fuchs.com.

5. Intended Use

The device is only approved for appropriate and intended use. Ignoring these instructions will void any warranty and absolve the manufacturer from any liability.

Technical data provided in the datasheet may be partly restrained by the information given in this instruction manual.

Use the device only within the specified ambient and operating conditions. The device is an electrical apparatus for hazardous areas.

The certificate applies only to the use of apparatus under atmospheric

If you use the device outside atmospheric conditions, consider that the permissible safety parameters should be reduced.

The device can be used in hazardous areas containing gas, vapor, and mist.

The device can be used in hazardous areas containing combustible dust. The device can be used in underground parts of mines as well as those

parts of surface installations of such mines containing firedamp and/or combustible dust.

5.1. Requirements for Equipment Protection Level Gb

Refer to the relevant certificate to see the relationship between the connected circuit type, the maximum permitted ambient temperature, the effective inner reactances, and if applicable the surface temperature or the temperature class.

The suitability for use of the device at ambient temperatures >60 °C in conjunction with hot surfaces has been checked by the notified body.

5.2. Requirements for Equipment Protection Level I

Refer to the relevant certificate to see the relationship between the connected circuit type, the maximum permitted ambient temperature, the effective inner reactances, and if applicable the surface temperature or the temperature class.

The suitability for use of the device at ambient temperatures >60 °C in conjunction with hot surfaces has been checked by the notified body.

5.3. Requirements for Equipment Protection Level Mb

Refer to the relevant certificate to see the relationship between the connected circuit type, the maximum permitted ambient temperature, the effective inner reactances, and if applicable the surface temperature or the temperature class.

The suitability for use of the device at ambient temperatures >60 °C in conjunction with hot surfaces has been checked by the notified body.

6. Improper Use

Protection of the personnel and the plant is not ensured if the device is not used according to its intended use.

7. Mounting and Installation

Observe the installation instructions according to IEC/EN 60079-14. Safety-relevant markings are found on the nameplate of the device or the nameplate supplied.

Attach the nameplate supplied in the immediate vicinity of the device. Attach the nameplate so that it is legible and indelible. Take the ambient conditions into account.

Do not mount a damaged or polluted device.

Mount the device so that it complies with the specified degree of protection according to IEC/EN 60529.

If you use the device in environments subject to adverse conditions, you must protect the device accordingly.

Do not remove the warning markings.

7.1. Requirements for Usage as Intrinsically Safe Apparatus

When connecting intrinsically safe devices with intrinsically safe circuits of associated apparatus, observe the maximum peak values with regard to explosion protection (verification of intrinsic safety). Observe the standards IEC/EN 60079-14 or IEC/EN 60079-25.

The type of protection is determined by the connected intrinsically safe circuit.

7.2. Specific Conditions of Use

Mount the device so that it complies with the specified degree of protection according to IEC/EN 60529.

7.2.1. Requirements in Relation to Electrostatics

Information on electrostatic hazards can be found in the technical specification IEC/TS 60079-32-1.

Do not mount the supplied nameplate in areas that can be electrostatically charged.

You can reduce the electrostatic hazards by minimizing the generation of static electricity. For example, you have the following options to minimize the generation of static electricity:

- · Control the environmental humidity.
- · Protect the device from direct airflow.
- Ensure a continuous drain off of the electrostatic charges.

7.2.1.1. Requirements for Equipment Protection Level Da

Avoid electrostatic charges which could result in electrostatic discharges while installing, operating, or maintaining the device.

7.2.2. Requirements to Mechanics

7.2.2.1. Requirements for Usage as Intrinsically Safe Apparatus

Protect the device from impact effects by mounting in a surrounding enclosure if it is used in the temperature range between the minimum permissible ambient temperature and -20 °C

Mount the device with at least a degree of protection of IP20 according to IEC/EN 60529.

8. Operation, Maintenance, Repair

Observe the specific conditions of use.

Safety-relevant markings are found on the nameplate of the device or the nameplate supplied.

Do not use a damaged or polluted device.

Do not repair, modify, or manipulate the device.

Modifications are permitted only if approved in this instruction manual and in the device-related documentation.

If there is a defect, always replace the device with an original device.

Do not remove the warning markings.

1/3

8.1. Requirements for Usage as Intrinsically Safe Apparatus

Only operate the device with intrinsically safe circuits according to IEC/EN 60079-11.

The type of protection is determined by the connected intrinsically safe

8.2. Requirements for Equipment Protection Level Gb

Observe the temperature table for the corresponding equipment protection level in the certificate.

Also observe the maximum permissible ambient temperature stated in the technical data. Keep to the lower of the two values.

8.3. Requirements for Equipment Protection Level Da

Observe the temperature table for the corresponding equipment protection level in the certificate.

Also observe the maximum permissible ambient temperature stated in the technical data. Keep to the lower of the two values.

8.4. Requirements for Equipment Protection Level Mb

Observe the temperature table for the corresponding equipment protection level in the certificate.

Also observe the maximum permissible ambient temperature stated in the technical data. Keep to the lower of the two values.

9. Delivery, Transport, Disposal

Check the packaging and contents for damage.

Check if you have received every item and if the items received are the ones you ordered.

Keep the original packaging. Always store and transport the device in the original packaging.

Store the device in a clean and dry environment. The permitted ambient conditions must be considered, see datasheet.

The device, built-in components, packaging, and any batteries contained within must be disposed in compliance with the applicable laws and guidelines of the respective country.

10. National Ex approvals

EAC-EX:	TC RU C-DE.AA87.B.00394

11. Safety-Relevant Technical Data

11.1. Equipment protection level Gb

Type of protection	Intrinsic safety
CE marking	C€ -0102
Certificates	
Appropriate type	NJ10-22-N
ATEX certificate	PTB 00 ATEX 2048 X
ATEX marking	🖫 II 2G Ex ia IIC T6T1 Gb
ATEX standards	EN IEC 60079-0:2018-07, EN 60079-11:2012-01
IECEx certificate	IECEx PTB 11.0037X
IECEx marking	Ex ia IIC T6T1 Gb
IECEx standards	IEC 60079-0:2017-12, IEC 60079-11:2011-06
Effective internal capacitance C _i	max. 130 nF
	A cable length of 10 m is considered.
Effective internal inductance L _i	max. 100 μH
	A cable length of 10 m is considered.

Maximum permissible ambient temperature in °C	Also observe the maximum permissible ambient temperature stated in the general technical data. Keep to the lower of the two values.
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 34 \text{ mW}$
	T6: 73 °C
	T5: 88 °C
	T4: 100 °C
	T3: 100 °C
	T2: 100 °C
	T1: 100 °C
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 64 \text{ mW}$
	T6: 69 °C
	T5: 84 °C
	T4: 100 °C
	T3: 100 °C
	T2: 100 °C
	T1: 100 °C
	$U_i = 16 \text{ V}, I_i = 52 \text{ mA}, P_i = 169 \text{ mW}$
	T6: 51 °C
	T5: 66 °C
	T4: 80 °C
	T3: 80 °C
	T2: 80 °C
	T1: 80 °C
	$U_i = 16 \text{ V}, I_i = 76 \text{ mA}, P_i = 242 \text{ mW}$
	T6: 39 °C
	T5: 54 °C
	T4: 61 °C
	T3: 61 °C
	T2: 61 °C
	T1: 61 °C

11.2. Equipment protection level Da

Type of protection	Intrinsic safety
CE marking	C€ -0102
Certificates	
Appropriate type	NJ10-22-N
ATEX certificate	PTB 00 ATEX 2048 X
ATEX marking	
ATEX standards	EN IEC 60079-0:2018-07, EN 60079-11:2012-01
IECEx certificate	IECEx PTB 11.0037X
IECEx marking	Ex ia IIIC T ₂₀₀ 135°C Da
IECEx standards	IEC 60079-0:2017-12, IEC 60079-11:2011-06
Effective internal	max. 130 nF
capacitance C _i	A cable length of 10 m is considered.
Effective internal	max. 100 μH
inductance L _i	A cable length of 10 m is considered.
Maximum permissible ambient temperature in °C	Also observe the maximum permissible ambient temperature stated in the general technical data. Keep to the lower of the two values.
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 34 \text{ mW}$
	100 °C
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 64 \text{ mW}$
	100 °C
	$U_i = 16 \text{ V}, I_i = 52 \text{ mA}, P_i = 169 \text{ mW}$
	62 °C

11.3. Equipment protection level Mb

Type of protection	Intrinsic safety
Certificates	
Appropriate type	NJ10-22-N
IECEx certificate	IECEx PTB 11.0037X
IECEx marking	Ex ia I Mb

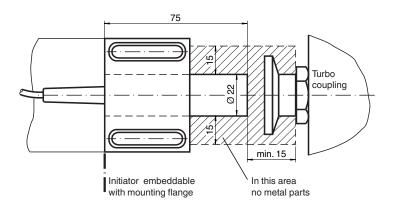
/ 2021-08 2/3

IECEx standards	IEC 60079-0:2017-12, IEC 60079-11:2011-06
Effective internal capacitance C _i	max. 130 nF
	A cable length of 10 m is considered.
Effective internal	max. 100 μH
inductance L _i	A cable length of 10 m is considered.
Maximum permissible ambient temperature in °C	Also observe the maximum permissible ambient temperature stated in the general technical data. Keep to the lower of the two values.
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 34 \text{ mW}$
	100 °C
	$U_i = 16 \text{ V}, I_i = 25 \text{ mA}, P_i = 64 \text{ mW}$
	100 °C
	$U_i = 16 \text{ V}, I_i = 52 \text{ mA}, P_i = 169 \text{ mW}$
	80 °C
	$U_i = 16 \text{ V}, I_i = 76 \text{ mA}, P_i = 242 \text{ mW}$
	61 °C

/2021-08 3/3

Inductive sensor NJ10-22-N-E93-Y246869

Comfort series



Dimensions

Technical Data

General specifications

denotal operations		
Switching function		Normally closed (NC)
Output type		NAMUR
Rated operating distance	Sn	10 mm
Installation		non-flush
Assured operating distance	Sa	0 10 mm
Output type		2-wire
Nominal ratings		
Nominal voltage	Uo	8.2 V (R _i approx. 1 kΩ)
Switching frequency	f	0 1000 Hz
Hysteresis	Н	typ. 5 %
Current consumption		
Measuring plate not detected		min. 3 mA
Measuring plate detected		≤ 1 mA
Functional safety related parameters		
MTTF _d		3602 a
Mission Time (T _M)		20 a
Diagnostic Coverage (DC)		0 %
Compliance with standards and directives		
Standard conformity		
NAMUR		EN 60947-5-6:2000 IEC 60947-5-6:1999

Release date: 2021-06-21 Date of issue: 2021-06-21 Filename: 70133283_eng.pdf

Technical Data	
Standards	EN 60947-5-2:2007 EN 60947-5-2/A1:2012 IEC 60947-5-2:2007 IEC 60947-5-2 AMD 1:2012
Approvals and certificates	
IECEx approval	
Equipment protection level Gb	IECEx PTB 11.0037X
Equipment protection level Da	IECEx PTB 11.0037X
Equipment protection level Mb	IECEx PTB 11.0037X
ATEX approval	
Equipment protection level Gb	PTB 00 ATEX 2048 X
Equipment protection level Da	PTB 00 ATEX 2048 X
EAC conformity	TR CU 012/2011
UL approval	cULus Listed, General Purpose
Ambient conditions	
Ambient temperature	-40 100 °C (-40 212 °F) Also observe the maximum permissible ambient temperature stated in the data for application in connection with hazardous areas. Keep to the lower of the two values.
Mechanical specifications	
Connection type	cable
Housing material	PBT
Sensing face	PBT
Degree of protection	IP68
Cable	
Cable diameter	6 mm ± 0.2 mm
Bending radius	> 10 x cable diameter
Material	silicone
Core cross-section	$0.75~\mathrm{mm}^2$
Length	L 10 m
General information	
Use in the hazardous area	see instruction manuals

Connection

EU-Declaration of conformity

en/de

EU-Konformitätserklärung

Pepperl+Fuchs SE Lilienthalstraße 200 68307 Mannheim Germany Phone +49 621 776-0 Fax +49 621 776-1000

Phone +49 621 776-0 No. / Nr.: DOC-5073 Fax +49 621 776-1000 Date / Datum: 2021-07-21

Copyright Pepperl+Fuchs www.pepperl-fuchs.com

Declaration of conformity / Konformitätserklärung

We, Pepperl+Fuchs SE declare under our sole responsibility that the **products** listed below are in conformity with the listed **European Directives** and **standards**.

Die Pepperl+Fuchs SE erklärt hiermit in alleiniger Verantwortung, dass die unten gelisteten **Produkte** den genannten **Europäischen Richtlinien** und **Normen** entsprechen.

Products / Produkte

Product / Produkt	Item number	Description / Be- schreibung
NJ2-12GK-N-Y40110	70133235	Inductive sensor
NJ2-12GK-N-10M-Y89552	70133232	Inductive sensor
NJ2-12GK-N-25M	70133233	Inductive sensor
NJ2-12GK-N-5M	70133234	Inductive sensor
NJ2-12GM-N-Y08766	70133239	Inductive sensor
NJ2-12GM-N-Y10638	70133240	Inductive sensor
NJ2-14GM-N-C50	70133255	Inductive sensor
NJ2-14GM-N-V1-Y19784	70133256	Inductive sensor
NJ2,5-14GM-N-V1-Y21146	70133054	Inductive sensor
NJ25-50-N	70133327	Inductive sensor
NJ10-30GK-N-5M	70133311	Inductive sensor
NJ25-50-N-15M	70133328	Inductive sensor
NJ15-30GKK-N	70133073	Inductive sensor
NJ25-50-N-5M	70133329	Inductive sensor
NJ15-30GK-N	70133317	Inductive sensor
NJ15-30GK-N-Y08943	70133320	Inductive sensor
NJ15-30GK-N-10M	70133074	Inductive sensor
NJ15-30GK-N-20M	70133318	Inductive sensor
NJ15-30GK-N-30M	70133319	Inductive sensor
NJ20-40-N	70133323	Inductive sensor
NJ2-11-N-G-Y102883	70133198	Inductive sensor
NJ2-11-N-G-910	70133196	Inductive sensor
NJ10-22-N	70133280	Inductive sensor
NJ10-22-N-E93-Y245590	70133281	Inductive sensor
NJ10-22-N-E93-Y246868	70133282	Inductive sensor
NJ10-22-N-E93-Y246869	70133283	Inductive sensor
NJ10-22-N-G	70133284	Inductive sensor

Product / Produkt	Item number	Description / Be- schreibung
NJ10-22-N-G-5M	70133285	Inductive sensor
NJ10-30GKK-N	70133308	Inductive sensor
NJ10-30GK-N	70133309	Inductive sensor
NJ10-30GK-N-15M	70133310	Inductive sensor
NJ2-11-N-Y14235	70133202	Inductive sensor
NJ2-12GK-N	70133049	Inductive sensor

■ Directives and Standards / Richtlinien und Normen

EU-Directive	Standards
EU-Richtlinie	Normen
ATEX 2014/34/EU	EN 60079-11:2012-01
(L96/309-356)	EN IEC 60079-0:2018-07
EMC 2014/30/EU (L96/79-106)	EN 60947-5-2/A1:2012-11 EN 60947-5-2:2007-12 EN 60947-5-6:2000-01 EN IEC 60947-5-2:2020-03
RoHS 2011/65/EU (L174/88-110)	EN IEC 63000:2018-12

Affixed CE Marking / Angebrachte CE-Kennzeichnung

Signatures / Unterschriften

Mannheim. 2021-07-21

i.V. Ulrich Ehrenfried

Head of Innovation Unit Electromagnetic Global Product Manager Sensors

i.V. Tobias Dittmer

ANNEX ATEX

Notified Body QM-System / Notifizierte Stelle des QM-Systems Physikalisch Technische Bundesanstalt (0102) Bundesallee 100 38116 Braunschweig Germany

Marking and Certificates / Kennzeichnung und Zertifikate

Marking	Certificate	Issuer ID
Kennzeichnung	Zertifikat	Aussteller ID
	PTB 00 ATEX 2048 X	

Key for Issuer ID / Schlüssel zur Aussteller ID

1107 101 10001	-, i.e. i.e. i.e. i.e. i.e. i.e. i.e. i.e		
ID	Issuer / Aussteller		
0102	Physikalisch Technische Bundesanstalt Bundesallee 100 38116 Braunschweig Germany		

DOC-5073 / 2021-07-21 1/1

Your automation, our passion.

Pepperl+Fuchs SE • 68307 Mannheim • Germany

Customer: DE164472

J.M. Voith SE & Co. KG | VTA

Mannheim, November 24, 2023

We, Pepperl+Fuchs SE at 68307 Mannheim hereby declare that the listed product/s have been produced conform to the Regulation (EC) No 1907/2006 (REACH). Used SVHC according Article 33 of the regulation are noted.

Manufacturer Declaration

Item/s					
Item Number	Item Description	Your Item No			
SCIP No.					
SVHC					

70133283 NJ10-22-N-E93-Y246869

313df958-fb94-4948-91b4-843538f6e738

-4,4'-isopropylidenediphenol (Bisphenol A), EC 201-245-8,

CAS 80-05-7

-Lead (Pb) EC 231-100-4, CAS 7439-92-1

This document is generated automatically and valid without signature. The document represents the present status of knowledge.

Department Global Compliance 24.11.2023 Mannheim

14.5 Dispositivo de leitura KFD2-SR2-Ex2.W.SM

Voith N.º de material: 201.03905210

Manual de instruções	Pepperl+Fuchs
Dados técnicos	Pepperl+Fuchs
Instrução de segurança	Pepperl+Fuchs
Declaração de conformidade	Pepperl+Fuchs
Declaração do fabricante	Pepperl+Fuchs

Instruction Manual

Marking

K-System, Isolated barriers for Zone 2

Device identification

Model number

ATEX approval

Group, category, type of protection, temperature classification

table 1

The exact designation of the device can be found on the name plate on the device side

Pepperl+Fuchs GmbH

Lilienthalstrasse 200, 68307 Mannheim, Germany

Target Group, Personnel

Responsibility for planning, assembly, commissioning, operation, maintenance, and dismounting lies with the plant operator. Mounting, installation, commissioning, operation, maintenance and dismounting of the device may only be carried out by appropriate trained and qualified personnel. The instruction manual must be read and understood.

Prior to using the device you should make yourself familiar with the device and carefully read the instruction manual

Reference to Further Documentation

Observe laws, standards, and directives applicable to the intended use and the operating location.

The corresponding datasheets, declarations of conformity, EC-type examination certificates, certificates and control drawings if applicable supplement this document. You can find this information under www.pepperl-fuchs.com.

Intended Use

The device is only approved for appropriate and intended use. Ignoring these instructions will void any warranty and absolve the manufacturer from any liability.

The device is used in control and instrumentation technology (C&I technology) for the galvanic isolation of signals such as 20 mA and 10 V standard signals or alternatively for adapting or standardizing signals. The device has intrinsically safe circuits that are used for operating intrinsically safe field devices in hazardous areas.

Use the device only within the specified ambient conditions.

The device is designed for mounting on a 35 mm DIN mounting rail according to EN 60715.

Only use the device stationary.

The device is an associated apparatus according to IEC/EN 60079-11. The device is an electrical apparatus for hazardous areas of Zone 2.

Improper Use

Protection of the personnel and the plant is not ensured if the device is not being used according to its intended use.

The device is not suitable for isolating signals in power installations unless

this is noted separately in the corresponding datasheet.

Mounting and Installation

Do not mount a damaged or polluted device. Mount the device in a way that the device is protected against mechanical hazard. Mount the device in a surrounding enclosure for example. Do not mount the device in the dust hazardous area.

The device fulfills a degree of protection IP20 according to IEC/EN 60529. The device must be installed and operated only in an environment that ensures a pollution degree 2 (or better) according to IEC/EN 60664-1. If used in areas with higher pollution degree, the device needs to be

protected accordingly.
All circuits connected to the device must comply with the overvoltage category II (or better) according to IEC/EN 60664-1.

Only use power supplies that provide protection against electric shock (e. g. SELV or PELV) for the connection to power feed modules.

Observe the installation instructions according to IEC/EN 60079-14.

Requirements for Cables and Connection Lines

Observe the following points when installing cables and connection lines: Observe the permissible core cross-section of the conductor.

If you use stranded conductors, crimp wire end ferrules on the conductor eńds.

Use only one conductor per terminal.

When installing the conductors the insulation must reach up to the terminal.

Observe the tightening torque of the terminal screws.

If the rated voltage is greater than 50 V AC, proceed as follows: 1. Switch off the voltage.

2. Connect the terminal blocks or disconnect the terminal blocks.

Requirements for Usage as Associated Apparatus

If circuits with type of protection Ex i are operated with non-intrinsically safe circuits, they must no longer be used as circuits with type of

protection Ex i. Intrinsically safe circuits of associated apparatus can be led into hazardous areas. Observe the compliance of the separation distances to all non-intrinsically safe circuits according to IEC/EN 60079-14. Observe the compliance of the separation distances between two adjacent intrinsically safe circuits according to IEC/EN 60079-14. Observe the maximum values of the device, when connecting the device to intrinsically safe apparatus.

When connecting intrinsically safe devices with intrinsically safe circuits of associated apparatus, observe the maximum peak values with regard to explosion protection (verification of intrinsic safety). Observe the standards IEC/EN 60079-14 or IEC/EN 60079-25

If no L_{o} and C_{o} values are specified for the simultaneous appearance of lumped inductances and capacitances, the following rule applies.

- The specified value for L_o and C_o is used if one of the following conditions applies: • The circuit has distributed inductances and capacitances only, e. g., in
 - cables and connection lines. • The total value of L_i (excluding cable) of the circuit is < 1 % of the spe-
- cified Lo value. • The total value of C_i (excluding cable) of the circuit is < 1 % of the spe-
- ciffed C₀ value.

 A maximum of 50 % of the specified value for L₀ and C₀ is used if the fol-

lowing condition applies: The total value of L_i (excluding cable) of the circuit is ≥ 1 % of the spe-

cified Lo value. The total value of C_i (excluding cable) of the circuit is ≥ 1 % of the specified Co value.

The reduced capacitance for gas groups I, IIA and IIB must not exceed the value of 1 μ F (including cable). The reduced capacitance for gas group IIC must not exceed the value

of 600 nF (including cable).

If more channels of one device are connected in parallel, ensure the parallel connection is made directly at the terminals of the device. When verifying the intrinsic safety, observe the maximum values for the parallel connection.

Requirements for Equipment Protection Level Gc

The device must be installed and operated only in surrounding enclosures that

- comply with the requirements for surrounding enclosures according to IEC/EN 60079-0,
- are rated with the degree of protection IP54 according to IEC/EN 60529.

Connection or disconnection of energized non-intrinsically safe circuits is only permitted in the absence of a potentially explosive atmosphere. Provide a transient protection. Ensure that the peak value of the transient protection does not exceed 140 % of the rated voltage. Place warning label "Warning – Do not remove or replace fuse when energized!" visibly on the housing.

Operation, Maintenance, Repair

The devices must not be repaired, changed or manipulated. If there is a defect, the product must always be replaced with an original device. If the rated voltage is greater than 50 V AC, proceed as follows: 1. Switch off the voltage.

2. Connect the terminal blocks or disconnect the terminal blocks.

Requirements for Equipment Protection Level Gc

Connection or disconnection of energized non-intrinsically safe circuits is only permitted in the absence of a potentially explosive atmosphere. Only use operating elements in the absence of a potentially explosive atmosphere.

Only use the programming socket in the absence of a potentially explosive atmosphere.

Only change the replaceable fuse, when the device is de-energized.

Delivery, Transport, DisposalCheck the packaging and contents for damage.
Check if you have received every item and if the items received are the ones you ordered.

Always store and transport the device in the original packaging. Store the device in a clean and dry environment. The permitted ambient conditions (see datasheet) must be considered.

Disposing of device, packaging, and possibly contained batteries must be in compliance with the applicable laws and guidelines of the respective country.

Standstill and Rotational Direction **Monitor**

KFD2-SR2-Ex2.W.SM

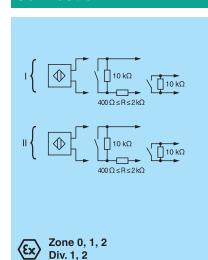
- 2-channel isolated barrier
- 24 V DC supply (Power Rail)
- Dry contact or NAMUR inputs
- Selectable frequency trip values
- 2 relay contact outputs
- Start-up override
- Selectable mode of operation
- Line fault detection (LFD)
- Up to SIL 2 acc. to IEC/EN 61508

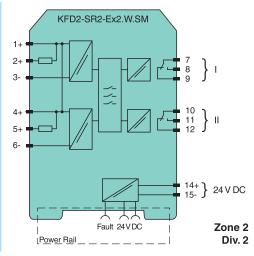
Function

This isolated barrier is used for intrinsic safety applications.

This device is a standstill monitor that accepts input frequency pulses and triggers an output when the frequency drops below Two start-up override values are available. This unit can also be used to determine rotation direction.

During an error condition, the relay reverts to its de-energized state and the LEDs indicate the fault according to NAMUR NE 44.


The device has LED status indicators for direction of rotation detection, limit detection, supply, and hardware faults.


The device is easily configured by the use of DIP switches.

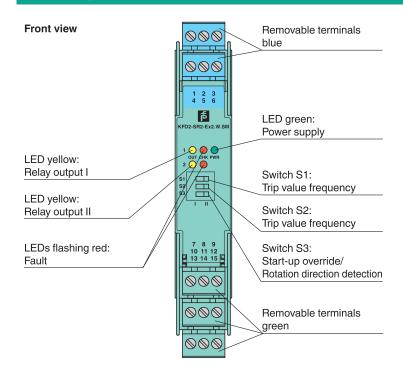
If the device is operated via Power Rail, additionally a collective error message is available.

For additional information, refer to www.pepperl-fuchs.com.

Connection

Technical Data

Release date: 2022-07-19 Date of issue: 2022-07-19 Filename: 132964_eng.pdf


and programmable
terminals 14+, 15-

Technical Data		
Power consumption		max. 1.5 W
·		max. 1.5 vv
Input Connection side		field side
Connection		Input I: terminals 1+, 2+, 3-; Input II: terminals 4+, 5+, 6-
Rated values		acc. to EN 60947-5-6 (NAMUR)
Open circuit voltage/short-circuit current		approx. 8 V DC / approx. 8 mA
Switching point/switching hysteresis		1.2 2.1 mA / approx. 0.2 mA
Line fault detection		breakage I ≤ 0.1 mA , short-circuit I > 6 mA
Control input		sensor power supply approx. 8.2 V, impedance 1.2 k Ω
Pulse duration		> 200 µs for standstill monitoring, > 250 µs for rotation direction detecion
Output		
Connection side		control side
Connection		output I: terminals 7, 8, 9; output II: terminals 10, 11, 12
Contact loading		250 V AC/2 A/cos φ > 0.75; 126.5 V AC/4 A/cos φ > 0.75; 40 V DC/2 A resistive loa
Minimum switch current		2 mA / 24 V DC
Energized/De-energized delay		approx. 20 ms / approx. 20 ms
Mechanical life		10 ⁷ switching cycles
Trip value	f _{max}	for standstill monitoring: 0.1 Hz; 0.5 Hz; 2 Hz; 10 Hz adjustable via DIP switch (S1 and S2)
Fransfer characteristics		
Accuracy		5 % (S3 = I), 30 % (S3 = II)
Start-up override		5 seconds or 20 seconds, programmable
Frequency range		≤ 2 kHz
Rotation direction detection		90° phase difference between pulse input signal 1 and 2, overlapping ≥ 125 μs
Galvanic isolation		
Input/Output		reinforced insulation according to IEC/EN 61010-1, rated insulation voltage 300 V_{eff}
Input/power supply		reinforced insulation according to IEC/EN 61010-1, rated insulation voltage 300 V_{eff}
Output/power supply		reinforced insulation according to IEC/EN 61010-1, rated insulation voltage 300 V_{eff}
Output/Output		reinforced insulation according to IEC/EN 61010-1, rated insulation voltage 300 V_{eff}
ndicators/settings		
Display elements		LEDs
Control elements		DIP switch
Configuration		via DIP switches
Labeling		space for labeling at the front
Directive conformity		
Electromagnetic compatibility		
Directive 2014/30/EU		EN 61326-1:2013 (industrial locations)
Low voltage		, ,
Directive 2014/35/EU		EN 61010-1:2010
Conformity		
Electromagnetic compatibility		NE 21:2006
Degree of protection		IEC 60529:2001
Input		EN 60947-5-6:2000
Ambient conditions		
Ambient temperature		-20 60 °C (-4 140 °F)
Mechanical specifications		,
Degree of protection		IP20
		screw terminals
Connection		SOLOTE COLLINIANO
Connection		annrox 150 g
Connection Mass Dimensions		approx. 150 g 20 x 119 x 115 mm (0.8 x 4.7 x 4.5 inch) (W x H x D) , housing type B2

Technical Data

Data for application in connection with haza	rdous a	reas
EU-type examination certificate		PTB 00 ATEX 2080
Marking		 II (1)G [Ex ia Ga] IIC II (1)D [Ex ia Da] IIIC I (M1) [Ex ia Ma] I
Input		Ex ia
Voltage	Uo	10.5 V
Current	Io	13 mA
Power	Po	34 mW (linear characteristic)
Supply		
Maximum safe voltage	U_{m}	253 V AC / 125 V DC (Attention! U _m is no rated voltage.)
Output		
Maximum safe voltage	U_{m}	253 V AC (Attention! The rated voltage can be lower.)
Fault indication output		
Maximum safe voltage	U _m	40 V DC (Attention! U _m is no rated voltage.)
Certificate		TÜV 99 ATEX 1493 X
Marking		
Output		
Contact loading		50 V AC/4 A/cos φ > 0.7; 40 V DC/2 A resistive load
Galvanic isolation		
Input/Output		safe electrical isolation acc. to IEC/EN 60079-11, voltage peak value 375 V
Input/power supply		safe electrical isolation acc. to IEC/EN 60079-11, voltage peak value 375 V
Directive conformity		
Directive 2014/34/EU		EN IEC 60079-0:2018+AC:2020 , EN 60079-7:2015+A1:2018 , EN 60079-11:2012 , EN IEC 60079-15:2019
International approvals		
FM approval		
FM certificate		FM19US0207X
Control drawing		116-0035
UL approval		E106378
Control drawing		116-0145
Contact loading		250 V AC/2 A/cos φ > 0.75; 126.5 V AC/4 A/cos φ > 0.75; 30 V DC/2 A resistive load
CSA approval		
Control drawing		116-0047
IECEx approval		
IECEx certificate		IECEx PTB 11.0034 , IECEx TUN 19.0013X
IECEx marking		[Ex ia Ga] IIC [Ex ia Da] IIIC [Ex ia Ma] I Ex ec nC IIC T4 Gc
General information		
Supplementary information		Observe the certificates, declarations of conformity, instruction manuals, and manuals where applicable. For information see www.pepperl-fuchs.com.

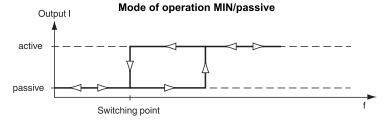
Assembly

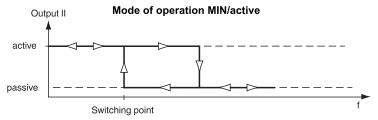
Matching System Components

KFD2-EB2	Power Feed Module
UPR-03	Universal Power Rail with end caps and cover, 3 conductors, length: 2 m
UPR-03-M	Universal Power Rail with end caps and cover, 3 conductors, length: 1,6 m
UPR-03-S	Universal Power Rail with end caps and cover, 3 conductors, length: 0.8 m
K-DUCT-BU	Profile rail, wiring comb field side, blue
K-DUCT-BU-UPR-03	Profile rail with UPR-03- * insert, 3 conductors, wiring comb field side, blue

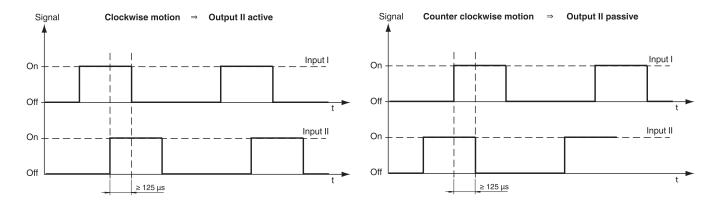
Accessories

	F-NR3-Ex1	NAMUR Resistor Network
	KF-ST-5GN	Terminal block for KF modules, 3-pin screw terminal, green
	KF-ST-5BU	Terminal block for KF modules, 3-pin screw terminal, blue
*	KF-CP	Red coding pins, packaging unit: 20 x 6


The function of standstill monitor with start-up override (S3 = I) or standstill monitor with rotation direction monitoring (S3 = II) can be selected by means of DIP switches.


S3:	I	II
Function:	Standstill monitor with	Standstill monitor with
	start-up override	rotation direction monitoring
Input I:	Pulse input 1:	Pulse input 1:
	NAMUR	NAMUR
	contacts (bounce-free)	contacts (bounce-free)
Input II:	Start-up override:	Pulse input 2:
	contact terminal 4 + 6: 20 seconds	NAMUR
	contact terminal 5 + 6: 5 seconds	contacts (bounce-free)
Output I:	MIN/passive	MIN/passive
Output II:	MIN/active	Direction of rotation/error

Standstill monitor with start-up override (S3 = I)


If the frequency falls below the trip value set with the DIP switches S1 and S2, the standstill monitor with start-up override switches the output I to passive and the output II to active. Input I is used to monitor the frequency of rising current edges. Signal transmitters can be sensors in accordance with EN 60947-5-6 (NAMUR) or contacts. Input I is monitored for lead breakage/short-circuiting. A start-up override can be initiated via input II. The duration of the start-up override can be selected between 5 and 20 seconds by means of a bridge (starting trigger) or an external trigger signal. During the start-up override time the outputs assume the "no standstill" state. In this case there is no lead breakage/short-circuit monitoring at input II.

Trip value	Hysteresis	Switch S2	Switch S1
0.1 Hz	0.02 Hz	I	I
0.5 Hz	0.1 Hz	I	II
2 Hz	0.4 Hz	II	I
10 Hz	2 Hz	II	II

The device also offers stand still monitoring with direction of rotation monitoring as an alternative to stand still monitoring with start-up override. The trip values are identical to the standstill monitor with start-up override. At input II a signal that is offset by 90° to input I has to be applied; in this context minimum signal overlapping should be ensured. Signal transmitters at input I and input II can be sensors in accordance with DIN EN 60947-5-6 (NAMUR) or contacts. Both inputs are monitored for lead faults. Output I is used for standstill signalling and switches to a de-energized state (passive) in the event of a standstill. Output II is switched to active when the direction of rotation is clockwise. If a reverse rotation is detected or if a signal overlap is missing, output II switches to a de-energized state (passive). In this case it can be concluded, that the sensor is misadjusted or defective. If the sensor at input I is misadjusted or defective, input II is used for standstill monitoring.

Behaviour during malfunction:

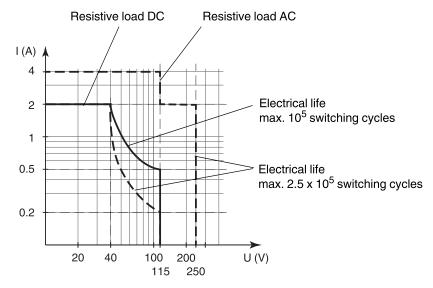
- · Monitoring for lead faults
- · Continuous monitoring of the device for errors in internal memory

If an error occurs, both relays go into the secure state, the red LEDs indicate the error and a collective error message is generated via the Power Rail.

Advice on use in SIL2 applications (Functional safety)

Care should be taken to ensure that the relays are de-energized (passive) in the critical condition of the application. Then, in the event of a power failure (de-energized, passive relay) the safety-critical state (energized) relay cannot be achieved.

Example 1:


The protective guard for a rotating shaft must remain locked in position until the shaft has stopped rotating. The safety-critical condition is the rotation of the shaft (risk of injury). For this reason, the locking of the protective guard should be achieved by means of a de-energized (passive) relay. The relay shall be energized (active) only when the shaft has stopped (safe condition). This device function is only achieved with "Standstill monitoring with start-up override" (S3 = I) and control of the protective guard with relay 2.

Example 2:

The cooling of a critical process by means of fans/coolant pumps has to be monitored. The safety-critical condition is the standstill of the fans/pumps (overheating). For this reason an alarm must be triggered when a relay has de-energized (passive). As long as the fans or the pumps are running (safety condition) the relay is energized (active). This device function can be achieved with "Standstill monitoring with start-up override" (S3 = I) and "Standstill monitoring with direction of rotation signalling" (S3 = II) with relay 1.

Characteristic Curve

Maximum switching power of output contacts

The maximum number of switching cycles is depending on the electrical load and may be higher when reduced currents and voltages are applied.

1 Function description

The standstill monitor KFD2-SR2-**.W.SM can be operated with the function of a standstill monitor with start-up override or as a standstill monitor with direction of rotation signalling. The function is selected using DIP switch 3.

The limit values for standstill detection can be selected using DIP switches 1 and 2 (for details see data sheet).

The device is equipped with 2 inputs and has a maximum input frequency of 2000 Hz

- The current firmware version is 2v0.
- The current hardware version is 1v0.

Function start-up override

The input pulses at input 1 are used for the standstill monitoring. The input is monitored for lead faults (LB – lead breakage/SC – short-circuit) (for Ex version).

Input 2 is used to trigger the start-up override. Two time intervals are available (5 s and 20 s). In this case the device reverts to the "no standstill" condition for the duration of the start-up override. No lead monitoring takes place in this condition.

Function direction of rotation signal

In this case both inputs are used for the standstill monitoring. If one of the two channels fails, then the remaining functional input is used for the standstill monitoring. In addition, a direction of rotation is determined via the sequence of the input signals of the two overlapping input signals. This direction of rotation is output via relay 2. Both inputs are monitored for lead faults (in the Ex version).

Behaviour in the event of a fault

- Monitoring for lead faults (in the Ex version)
- Continuous monitoring of the device for internal memory faults

On the occurrence of a fault, both relays revert to the safe condition, the red LEDs signal the fault and a collective error is output via the Power Rail (Ex devices only).

2 Use of the KFD2-SR2-**2.W.SM in the context of SIL2 applications

Make sure, that in the critical condition of the application the relays have dropped out (are passive). Then, in the case of power failure (dropped out relay) a safety "GO state" (relay pulled in) cannot occur.

This behaviour shall be tested before commissioning the system.

Example 1

The protective screen of a rotating shaft should remain locked until the shaft is at a standstill. The safety-critical condition is the rotating shaft (risk of injury). For this reason the locking of the protective screen should be achieved by means of a dropped out (passive) relay. The relay does not pull in (become active) until the shaft has stopped (safety GO state). This device function is only achieved with "standstill monitoring with start-up override" (S3 = I) and control of the protective screen with relay 2.

Example 2

The cooling of a critical process by means of a fan/coolant pump is to be monitored. The safety-critical state is the standstill of the fan/pump (overheating). For this reason the triggering of an alarm is achieved by means of a dropped out (passive) relay. As long as the fan or the pump is running (safety GO state) the relay is pulled in (active). This device function can be achieved with "standstill monitoring with start-up override" (S3 = I) and "standstill monitoring with direction of rotation signal" (S3 = II) with relay 1.

Further information on boundary and ambient conditions is provided in the associated data sheet.

3 Safety and installation instructions

The standstill monitor KFD2-SR2-**2.W.SM must only be operated by trained specialist personnel and in accordance with the data sheet.

The protection of the operating personnel and of the plant is only guaranteed when these devices are used for their intended application. Any other operation than that described in the data sheet and the safety instructions places the safety and function of the devices and connected systems in question.

In the event that faults cannot be eliminated, the devices should be switched off and protected against inadvertent restart. The devices must only be repaired by the manufacturer Pepperl+Fuchs. Interventions within the devices and modifications to them are dangerous and are therefore not permissible. Such actions will render any claims against the warranty null and void and will also negate the approval in accordance with SIL2.

Malfunctioning of the devices should be reported to the manufacturer Pepperl+Fuchs.

The standstill monitors are constructed to protection class IP21 and must accordingly be protected against adverse ambient conditions (water, small foreign bodies, etc.).

4 Failure rates

The failure rates and related characteristics are given in section 6 and the FMEDA. The mean probability of failure PFD is given in section 5.

The standstill monitor KFD2-SR2-**2.W.SM is categorised for the Safety Integrity Level SIL2. In the assessment of a complete system in which the standstill monitor is to be used, the failure rate of the complete loop must be considered.

5 Product life and maintenance

Product life is limited by the following parameters:

- Mechanical life of the relay of at least 2.5 x 10⁵ operating cycles at maximum permissible load (500 VA) in accordance with the data sheet.
 - At a contact loading of approx. 50 mW the life is approx. 5×10^6 operating cycles.
- Life of the flash memory: approx. 12 years
- Life of the Elko: approx. 15 years

For devices, which are used in the "Low Demand Mode", the appraisal has to be made in the context of the maintenance of the total system, but after 5 years at the latest.

PFD for devices with lead breakage detection after 5 years: 5.62E-4

PFD for devices without lead breakage detection after 5 years: 5.81E-4

For the detection of random faults, which have been categorised by the FMEDA as "undetected dangerous", the following tests are to be carried out during the maintenance intervals:

- Application of a frequency smaller than 10 % of the set limit frequency -> the relay must switch in accordance with the data in the data sheet.
- Application of a frequency greater than 10 % of the set limit frequency + associated hysteresis -> relay must switch in accordance with the data in the data sheet.
- When examining the switching states of the relay, a check has to be made in the dropped out condition to check whether the normally closed contact (NC) has a low resistance and the normally open contact (NO) has a high resistance (welding of the contacts).
- When examining the switching states of the relay, a check has to be made in the pulled in condition to check whether the normally closed contact (NC) has a high resistance (welding of the contacts) and the normally open contact (NO) has a low resistance (only necessary in the sense that it is available).

By means of these tests 95 % of all faults that have been categorised as "undetected dangerous" can be detected.

An early fault detection is not included in the functionality of the KFD2-SR2-**2.W.SM.

Recalibration is not necessary.

6 Validation

The validation of the SIL2 capability of the standstill monitor KFD2-SR2-**2.W.SM took place in the context of an assessment with EXIDA. The appropriate documents are available on the Internet or directly from Pepperl+Fuchs.

The value 0 has been taken as the hardware fault tolerance in accordance with Table B in EN 61508-2 (7.4.3.1.3).

The failure rates used are based on the "Basic Failure Rates" from the Siemens Standard SN29500.

In addition, the following assumptions have been made:

- Failure rates are constant, wear has not been taken into account.
- Fault propagations are not relevant.
- After a "Safe Failure" the repair time is 8 hours.
- The "Low Demand Mode" has been assumed.
- The failure rates of external power supplies have not been accounted for.
- Connected sensors have not been accounted for in the failure rates.
- Output 1 has been considered to be the safety-relevant output.
- Either the classification MIL-HNBK-217F or IEC 645-1 class C (max. temperature corresponds to the manufacturer's data) with an average ambient temperature of 40°C can be taken as the ambient condition.
- The test time, within which the logic control unit must react to a "Dangerous Detected" failures, is one hour.

The following SFF and failure rates have been determined for the standstill monitor KFD2-SR2-**2.W.SM:

With lead fault detection

$$\lambda_{sd} = 11 \text{ FIT}$$

$$\lambda_{SII} = 248 \text{ FIT}$$

$$\lambda_{dd} = 90 \text{ FIT}$$

$$\lambda_{du} = 26 \text{ FIT}$$

$$DC_S = 4.25 \%$$

$$DC_D = 77.59 \%$$

Without lead fault detection

$$\lambda_{sd} = 9 \text{ FIT}$$

$$\lambda_{SII} = 247 \text{ FIT}$$

$$\lambda_{dd} = 90 \text{ FIT}$$

$$\lambda_{du} = 27 \text{ FIT}$$

$$DC_S = 3.52 \%$$

$$DC_D = 76.92 \%$$

EU-Declaration of conformity

EU-Konformitätserklärung

Pepperl+Fuchs SE Lilienthalstraße 200 68307 Mannheim Germany Phone +49 621 776-0

Fax +49 621 776-1000

No. / Nr.: DOC-0170D Date / Datum: 2021-05-11

Copyright Pepperl+Fuchs www.pepperl-fuchs.com

Declaration of conformity / Konformitätserklärung

We, Pepperl+Fuchs SE declare under our sole responsibility that the **products** listed below are in conformity with the listed **European Directives** and **standards**.

Die Pepperl+Fuchs SE erklärt hiermit in alleiniger Verantwortung, dass die unten gelisteten **Produkte** den genannten **Europäischen Richtlinien** und **Normen** entsprechen.

Products / Produkte

Product / Produkt	Item num- ber	Description / Beschreibung
KFD2-SR2-EX1.W	132958	Switch amplifier
KFD2-SR2-EX1.W	203343	Switch amplifier
KFD2-SR2-EX1.W.LB	132959	Switch amplifier
KFD2-SR2-EX2.W	132960	Switch amplifier
KFD2-SR2-EX2.W.SM	132964	Standstill monitor

■ Directives and Standards / Richtlinien und Normen

EU-Directive EU-Richtlinie	Standards Normen
ATEX 2014/34/EU (L96/309-356)	EN 60079-11:2012-01 EN 60079-15:2010-05 EN IEC 60079-0/AC:2020-02 EN IEC 60079-0:2018-07
EMC 2014/30/EU (L96/79-106)	EN 61326-1:2013-01
LVD 2014/35/EU (L96/357-374)	EN 61010-1:2010-10
RoHS 2011/65/EU (L174/88-110)	EN IEC 63000:2018-12

Affixed CE Marking / Angebrachte CE-Kennzeichnung

Signatures / Unterschriften

Mannheim, 2021-05-11

ppa. Michael Kessler Executive Vice President Components & Technology i.V. Udo Körner Continuation Manager Value Engineering

ANNEX EMC

The products listed above fulfill the immunity test requirements for equipment intended for use in industrial locations.

Die oben gelisteten Produkte erfüllen die Störfestigkeits-Prüfanforderungen an Betriebsmittel, die zum Gebrauch in industriellen Bereichen vorgesehen sind.

ANNEX ATEX

Notified Body QM-System / Notifizierte Stelle des QM-Systems Physikalisch Technische Bundesanstalt (0102) Bundesallee 100 38116 Braunschweig Germany

Marking and Certificates / Kennzeichnung und Zertifikate

Marking Kennzeichnung	Certificate Zertifikat	Issuer ID Aussteller ID	
€x II (3) G	PF 08 CERT 0803	PF	
 ⟨⟨w⟩ (M1) ⟨w⟩ (1) D ⟨w⟩ (1) G 	PTB 00 ATEX 2080	0102	
⑤ II 3 G	TÜV 99 ATEX 1493X	TUN	

Key for Issuer ID / Schlüssel zur Aussteller ID

ID	Issuer / Aussteller
TUN	TÜV NORD CERT GmbH Langemarckstraße 20 45141 Essen Germany
PF	Pepperl+Fuchs Lilienthalstrasse 200 68307 Mannheim Germany
0102	Physikalisch Technische Bundesanstalt Bundesallee 100 38116 Braunschweig Germany

DOC-0170D / 2021-05-11 1/1

Your automation, our passion.

Pepperl+Fuchs SE • 68307 Mannheim • Germany

Customer: DE164472

201.03905110

J.M. Voith SE & Co. KG | VTA

Mannheim, November 24, 2023

We, Pepperl+Fuchs SE at 68307 Mannheim hereby declare that the listed product/s have been produced conform to the Regulation (EC) No 1907/2006 (REACH). Used SVHC according Article 33 of the regulation are noted.

Manufacturer Declaration

Item/s			
Item Number	Item Description	Your Item No	
SCIP No.			
SVHC			

84936ea3-e790-41fb-9ac6-76b25979f4bf

-Lead titanium zirconium oxide (PZT) EC 235-727-4, CAS 12626-81-2

KFD2-SR2-EX2.W.SM

- -Hexahydromethylphthalic anhydride including cis- and trans stereo isomeric forms and all possible combinations of the isomers EC 247-094-1, CAS 25550-51-0,EC 243-072-0,CAS 19438-60-9, EC 256-356-4, CAS 48122-14-1, EC 260-566-1,CAS 57110-29-9
- -4,4'-isopropylidenediphenol (Bisphenol A), EC 201-245-8, CAS 80-05-7
- -Lead (Pb) EC 231-100-4, CAS 7439-92-1

This document is generated automatically and valid without signature. The document represents the present status of knowledge.

Department Global Compliance 24.11.2023 Mannheim

132964

Voith Group St. Pöltener Str. 43 89522 Heidenheim, ALEMANHA

Telefone: + 49 7951 32 1666

E-mail: Industry.Service@voith.com

Internet: www.voith.com

