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1. Introduction

In order to ensure high reliability and safety for a drive system, 
it is essential that resonance ranges and component loads are 
calculated in advance. This is achieved by simulation calcula-
tions which are carried out with more or less drastically simpli-
fi ed versions of the actual systems behaviour. In this case, the 
simplifi ed systems behaviour is represented by mathematical 
models. Such models exist for many drive line elements which 
mostly originate from physical basics, for example Hooke’s 
law. 
Hydrodynamic couplings, however, are highly complex in their 
operation. Modelling across larger operating areas is therefore 
a very challenging task [1, 2, 3]. But in most cases, it is suffi -
cient to limit the mathematical description to one operating 
range, the nominal operating point. Under these conditions, a 
rather simple description of hydrodynamic couplings was de-
veloped in the form of a Kelvin model [4], which can be easily 
determined and also reproduced with any standard simulation 
software program. 
The validity of this Kelvin model is to be proven once more in 
this paper, as well as the fundamental characteristics of hydro-
dynamic couplings derived from it. Moreover, two basic practi-
cal problems for the design and simulation of drives with hy-
drodynamic couplings, especially marine drives, are explained. 

•   Simulation calculations in resonant ranges (second mode or 
higher) repeatedly show wide fl uctuations between theory 
(simulation) and actual measurements, so that there are 
insecurities regarding the validity of coupling models in this 
area. 

•   In the past it was standard procedure that drives with hydro-
dynamic couplings were designed separately. Primary and 
secondary driveline were regarded independently, eigenfre-
quencies and torsional loads were determined separately. 
Over the years, doubts were, however, raised, whether 
hydrodynamic couplings might not have a much stronger 
infl uence on the eigenfrequencies and the torsional loads 
of primary and secondary drivelines after all, which would 
mean that separate designs  could lead to major failures. For 
this reason, such systems are now no longer separated but 
designed as complete units. 

2. Hydrodynamic coupling as Kelvin model 

A stationary design of a hydrodynamic couplings is carried out 
as described in Equ. 1. 

The non-dimensional performance fi gure λ is in this case 
dependent on slip, the profi le parameters and the degree of 
fi lling, and is obtained by experiment.  It fl ows, like the density 
of the operating medium ρ, linearly into the calculation of the 
transmittable coupling torque. 
With geometrically similar couplings, the course of the perfor-
mance fi gure λ does not change, so that this torque, with the 
diameter of the pump impeller DP and the pump speed ω can 
also be theoretically determined for other models and input 
speeds. 

However, non-stationary procedures cannot be calculated with 
Equ. 1. For this, a different description is required, which has 
been developed in [4] in the form of a Kelvin model. 

Fig 1:  Kelvin Model (Indices: P = Pump; T = Turbine)

As is generally known, this model consists of a parallel arrange-
ment of a Hooke spring K and a viscous damper D  (Fig. 1) and 
is analogue to the description of highly fl exible couplings [5]. 
For this coupling type, the spring capacity and the damping 
value are assumed as constant values. 

Fig. 2:  Cross section of VTC 487 T coupling

The hydrodynamic coupling, however, distinguishes itself by 
non-linear behaviour even at nominal operating point, which 
results in frequency-dependent values for K and D. These are 
exemplarily illustrated for coupling size VTC 487 T (Fig. 2) at a 
pump speed of 1500 rpm and a nominal torque of 800 Nm in 
Fig. 3 and Fig. 4. At low excitation frequencies, the stiffness is 
low and the damping effect high. With increasing frequency, 
this effect reverses. In both cases, stiffness and damping effect 
are striving against a boundary value. Compared to other drive 
elements, the boundary value of the stiffness is very low. In 
this case, its value is at 3500 Nm/rad and corresponds, for ex-
ample, to that of a steel shaft with a diameter of 30 mm and a 
length of 1863 mm. In a drive system, the stiffness of the other 
drive elements is at least one power of ten higher than that of 
the hydrodynamic coupling. Even highly fl exible couplings are 
higher by a factor >3 at an identical nominal torque. This leads 
to the conclusion that the initial eigenfrequency of a drive is 
determined by the hydrodynamic coupling. 

K

D

TT

ϕT

TP

ϕP

ΘP ΘT

∅
 P

um
p 

=
 D

P
 =

 4
87

 m
m

∅
 9

0

Pump wheel

Turbine wheel

Oil filling

y g

2
P

5
PDT ω⋅⋅ρ⋅λ= Equ. 1



Fig. 3: Stiffness K

Fig. 4: Damping D

Outside the nominal slip area (from 0% to approx. 10%), the 
model according to [4] loses its validity and can therefore not 
be used for calculations of start-up and run-out procedures.   
Here, other modelling approaches need to be chosen [1, 2, 3], 
some of which are, however, highly complex. In most cases, it 
is suffi cient to calculate start-up and run-out procedures such 
as these, which are often quasi-stationary, with the stationary 
characteristic curve of the coupling. 

3.  Characteristics of hydrodynamic couplings

3.1  Low-pass behaviour

From the stiffness K and the damping effect D, the transmis-
sion behaviour of hydrodynamic couplings can be deduced in 
the form of an enlargement factor V. It is defi ned as the quo-
tient of coupling TK  to exciter torque TE  (Equ. 2) [5]. 

In Fig. 5, such a function is illustrated for coupling type VTC 
487 T that has already been looked at.  In this example, the 
eigenfrequency has been pre-set with 5 Hz and is meant to 
correspond with the fi rst mode of the entire drive system. Due 
to the very low stiffness and the mass distribution in the drive 
system, this mode is determined by the hydrodynamic coup-
ling. 

Fig. 5: Enlargement function

From Fig. 5, a low-pass behaviour with a low rise in resonance 
can be deduced. Up to the fi rst eigenfrequency, the exciter tor-
ques are transmitted by the hydrodynamic coupling, but they 
are strongly damped. However, the coupling torque TK decrea-
ses rapidly with increasing frequency. At six times the eigen-
frequency (30 Hz) it is a mere -30,5 dB (V = 3%) of the exciter 
torque TE.  This means that there is a wide-reaching decoupling 
and/or separation of torque fl uctuations. The resonance rise is 
uncritical, because, at +4,2 dB (V = 160%), it is in this case very 
low. 
Of particular interest is the height of the maximum fi rst eigen-
frequency (fi rst mode). Owing to the low stiffness of all stan-
dard coupling types, sizes and systems, it is <20 Hz, often even 
below 10 Hz. Hence, with speeds of < 600 rpm, the angular 
frequency of the low-pass behaviour of hydrodynamic cou-
plings is very low. For vibration excitations of the second order 
or higher, as they are, for example, generated by combustion 
engines, it presents a genuine obstacle. 
This situation is made clearer when looking at the measuring 
values in Fig. 6.  They were obtained from test stand measure-
ments at the VTC 487 T coupling. At a pump speed of 1500 
rpm, a nominal operating point of 790 Nm was set, and the 
pump side was harmonically excited with increasing frequency 
and amplitude. The in- and output system each consisted of 
an inverter-controlled asynchronous machine. The primary and 
secondary torques and speeds were measured before and after 
the hydrodynamic coupling.  

Fig. 6:   Measuring values – Torque amplitudes of pump side 
(red) and turbine side (blue) 

In Fig. 6, the torque amplitudes of the exciting pump side TP 

and the adapting turbine side TT are projected over the exciter 
frequency. Up to a frequency of 7 Hz, the turbine torque is 
above that of the pump impeller. This is the range of the reso-
nance rise. The maximum quotient (TT / TP) of this rise is at 5 Hz, 
the fi rst eigenfrequency of the system. Above 7Hz, the torque 
amplitudes of the turbine wheel continually decline, in spite of 
rising exciter amplitudes on the pump side. At the 
maximum exciter amplitude of 700 Nm (49 Hz), the torque 
amplitude measured at the secondary side is a mere 62 Nm. 

3.2 First eigenfrequency in proportion to speed 

For drives with hydrodynamic couplings, it is often the case 
that the fi rst eigenfrequency is in proportion to the input 
speed. This is initially puzzling, but can be relatively easily 
explained. At a constant frequency ratio Ω (Equ. 3),

  

modelling according to [4] results in a coupling stiffness pro-
portional to the square of the input speed. (Equ. 4)  As it is 
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a well-known fact that the eigenfrequency changes with the 
square root from the stiffness (Equ. 5), it is also proportional to 
the input speed (Equ. 6).

  

The frequency ratio Ω in Equ. 3 is constant in most drive 
systems, for example the exciter spectrum of a combustion 
en gine, a propeller or the rotor of a wind power station. Here, 
the exciter frequencies are always in proportion to the input 
speed, and the frequency ratio Ω is hence constant. Normally, 
torsional eigenfrequencies are not a function of speed, but 
constant. (Fig. 7). The fact that they can still take on this role, is 
not alarming, but rather advantageous. As can be easily seen, 
no further intersections of the exciters with this eigenfrequen-
cy alignment exist above this input speed (except at 0 rpm). 
A system as described in Fig. 7 is therefore in the overcritical 
range at any drive speed. But even a scenario, where the fi rst 
eigenfrequency is close to an exciter line, can be quite permis-
sible. This is to be illustrated later by the example of a marine 
drive.  

.

Fig. 7: Example of a resonance graph 

4.   Verifi cation of Kelvin models for 
hydrodynamic couplings

The most infl uential parameters on the torsional vibration be-
haviour of hydrodynamic couplings are the coupling size and 
the coupling design, the fi lling level, the operating medium 
used, as well as the input speed, the nominal operating point 
and the exciter frequency. 
In view of such a high number of infl uential parameters, a mo-
del verifi cation can only be carried out selectively. A complete 
experimental investigation would be immensely costly and 
labor-intensive. The coupling behaviour therefore needs to be 
extrapolated to other conditions. 
With the description per [4] and the above–mentioned infl uen-
tial parameters, the two parameters ‘stiffness’ and ‘damping’ 
of the Kelvin model can be relatively easily determined, so that 
this extrapolation can be carried out without problems. In this 
way, the infl uence of individual parameters and their effect on 
the drive system can also be examined. 
The model verifi cations presented here were carried out at a 
marine drive with a nominal output of 1800 kW and a hydrody-

namic double coupling size 1150 (VTC 1150 DTM), as well as by 
test stand measurements at a coupling size 487 (VTC 487 T) at 
an output of 125 kW. 

4.1   Model verifi cation on the basis of test 
stand measurements

The torque amplitudes in Fig. 6 were obtained in test stand 
measurements at a VTC 487 T coupling. As described above, 
an operating point of 790 Nm (slip = 3.3%) was set at a pump 
speed of 1500 rpm, and the pump side was harmonically 
excited with increasing frequency and torque amplitude. In 
Fig. 8 the measured speed amplitudes are illustrated. 

Fig. 8:   Measuring values – speed amplitudes of pump side 
(red) and turbine side (blue) 

From the four measured variables in Fig. 6 und Fig. 8, the stiff-
ness and damping values for the individual exciter frequencies 
can be determined with the phase information not shown here. 
This is shown in Fig. 9 und Fig. 10, and, for direct comparison, 
also the theoretically determined values per [4]. The conformity 
is very good and is hence another confi rmation of the theory 
of coupling modelling.

Fig. 9: Stiffness K – Measurements (dots); theory (continued) 

Fig. 10: Damping D – Measurements (dots); Theory (continued)

An experimental determination of the stiffness and damping 
values at an exciter frequency above 20 Hz is very diffi cult, be-
cause the difference angles and speeds, from which the Kelvin 
parameters are determined, are declining with increasing fre-
quency. Inaccuracies in the measuring value recordings would 
have a strong infl uence on the result, so that such measure-
ments were omitted.
On the other hand, model verifi cations for exciter frequencies 
above 20 Hz are not strictly necessary. As mentioned earlier, 
the fi rst eigenfrequency of a drive system is determined by the 
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hydrodynamic coupling and is at < 20 Hz for most standard 
coupling designs, sizes and systems, sometimes even below 
10 Hz. Higher eigenfrequencies occur in the primary and se-
condary drive line and are hardly infl uenced by the hydrody-
namic coupling. This subject will be referred to in greater detail 
at a later stage of this paper. Verifying the coupling model for 
exciter frequencies above 20 Hz would therefore be irrelevant 

4.2  Model verifi cation at a marine drive

The marine drive shown in Fig. 11 originates from the water 
tractor “M.V. Taurus“.  This boat is equipped with two eight-cy-
linder diesel engines rated at 1812 kW, both of which drive a 
Voith Schneider Propeller through a hydrodynamic Voith coup-
ling. Contrary to the test stand measurements, it is in this case 
not possible to generate targeted individual exciter frequencies 
and hence determine stiffness and damping. The examination 
of the coupling model is carried out by means of the calculated 
and measured eigenfrequencies. 
Torque measurements were carried out by strain gauge at the 
connect ing shaft of the gear coupling. At this point, the fi rst 
and the third eigenfrequency could be determined, both of 
which are in the secondary-side system. Owing to the low-pass 
behaviour of the hydrodynamic coupling, primary-side located 
modes could not be measured.
In the marine drive in Fig. 11, the main excitation occurs 
through the propeller, i. e. primarily at 5 and 10 times the pro-
peller speed (number of blades = 5). Under consideration of 
the gear stage, the fi rst propeller exciter frequency equals the 
0.39th order of the input speed, i. e. it is proportional to it.  

Exciter frequency propeller = 0.39 order of engine speed

The requirements of Equ. 3 are therefore fulfi lled. The calculati-
on [4] shows that the fi rst eigenfrequency of the drive is equal 
to the 0.37th order of the engine speed.  

Calculated fi rst eigenfrequency= 0.37 order of engine speed

Exciter frequency and eigenfrequency are therefore close to 
each other. In the frequency spectrum, a rise occurs precisely 
in this area (0.37th to 0.39th order), which increases with the 
engine speed and the pitch adjustment of the propeller. Al-
ternating torques of variable heights were measured in the 
connecting shaft of the gear coupling during various applica-
tions of the water tractor. In unfavourable cases, the value was 
+/- 3.86 kNm. German Lloyd prescribe a value of +/- 30% of the 
medium nominal torque in the speed range of 90% to 105% as 
maximum permissible alternating torque. With a maximum of 
+/- 22.3% of the nominal torque, we are therefore within the 
permissible range with this drive. 
As shown by this example, operation that is close to the fi rst 
eigenfrequency caused by the hydrodynamic coupling, can 
certainly be permissible. This statement can, however, not be 
generalized and needs to be examined from case to case. 
The third eigenfrequency was determined with 31.8 Hz on the 
basis of the measurements and is found in the secondary-side 
drive system. With a frequency of 30.4 Hz, the simulation cal-
culation is a mere 4.4% below the measuring value, which is 
a good result. It must be remarked here, that the stiffness of 
the hydrodynamic coupling has no signifi cant infl uence on this 
eigenfrequency. The third mode to 29.8 Hz was also calcu lated 
without it (see following chapter 5). 

Fig. 11: Mass scheme of marine drive

5.   Separate design of primary and 
secondary-side drivelines

A separate design of primary and secondary-side drivelines 
can be highly advantageous, if, at an early project stage, not 
all drive elements are known. In this case, the issue is not so 
much the stationary design, but the determination of eigenfre-
quencies and the question of possible resonance excitations. 
In the past, separate designs were carried out, for example, 
for marine drives. Here, it can be the case that drive motor or 
propeller systems are not yet known during the project phase. 
In order to be able to determine the relevant other, primary 
or secondary-side drive system, the entire system used to be 
hypothetically separated by the hydrodynamic coupling. An 
infl uence of the primary side on the secondary side and vice 
versa was hence excluded.  Over the years, this method was, 
however, put in doubt, so that separate designs are no longer 
practised today. For the above reasons, this makes the work of 
the project engineer more diffi cult, so that he will always raise 
the question of the validity of the previous design approach. 
For drives with wide differences in mass and/or stiffness dis-
tribution, eigenfrequencies can also be allocated directly to 
individual components, such as drive shafts, highly fl exible 
couplings or gearboxes. Drive systems with hydrodynamic 
couplings often show large differences when it comes to the 
distribution of their stiffness; in this case, the coupling stiffness 
is usually by at least one power of ten lower than the stiffness 
of the other elements.
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This results in the fi rst eigenfrequency being determined by 
the turbo coupling, amounting to less than 20 Hz for all stand-
ard drive systems, often even to less than 10 Hz. For the deter-
mination of the fi rst eigenfrequency, it is therefore suffi cient 
to reduce the entire drive system to a two-mass fl ywheel and 
calculate it with the coupling stiffness [4]. The frequency thus 
calculated is higher than the actual frequency. The minimum 
fi rst eigenfrequency can be determined by applying Neuber’s 
limit value theory [6].
Higher eigenfrequencies can initially be determined by treating 
the primary and secondary side of drivelines separately. In this 
case, the stiffness of the hydrodynamic coupling is neglected. 
Modes determined in this way coincide quite well with actual 
values. Table 1 shows a comparison of eigenfrequencies that 
have been calculated with and without coupling stiffness. The 
example refers to a torsional vibration chain with 6 masses 
and the values stated in Table 2. 

Table 1:   Inherent frequencies calculated with and without 
coupling stiffness

Separate designs must, however, be treated with some cau-
tion. It needs to be ensured that the coupling stiffness is at 
least one power of ten lower than that of the other drive ele-
ments. Experience has shown that deviations resulting from 
separate frequency determination can be assumed to amount 
to +/- 6%. Since the validity of the method described here is 
not theoretically proven and also dependant on the distribu-
tion of masses, it is always recommended to check the entire 
system. This applies in particular, if the “separate” calculation 
results in resonance-near operation. 

Table 2: Values of torsional vibration chain

The question, whether a secondary-side eigenfrequency is 
excited by the primary side (or vice versa) through the hydro-
dynamic coupling, and how high the amplitudes are, can only 
be answered by the system as a whole. Systems excitations 
with high frequencies may be drastically reduced by a hydro-
dynamic coupling, but they are still transmitted. However, this 
usually does not result in a noticeable increase of the total 
load. With modes that are only slightly damped, this may, 
nevertheless lead to problems. In this case, higher resonance 
rises are possible even with low exciter amplitudes. 
It also needs to be observed that the total load on the system 
consists of the sum of all individual loads. It is therefore not 
suffi cient to simply look at the amplitudes of each individual 

exciter frequency, in order to establish whether permissible 
values have been exceeded. Especially with resonances that 
are close to each other, the superposition of individual excita-
tions can quickly result in a doubling of the load.  

6.   Simulation calculations within the 
resonance range

In theory, simulation calculations within the resonance range 
are indeed possible. The question here is to determine the 
amplitudes during excitation closely to or directly at the point 
of resonance. What may work well theoretically, often proves 
diffi cult in practice. There may be considerable differences 
between the simulated and the measured amplitudes which 
can amount to several 100%.
The reasons for this are primarily incorrect or only partly ac-
curate data and/or assumptions regarding the drive system or 
the systems excitations. Even slight deviations between the 
calculated and the actual eigenfrequencies, or wrong assump-
tions regarding the systems excitation, might be suffi cient to 
falsify the simulation results considerably. A similar scenario 
occurs, if the damping values, e. g. gears, shafts and connec-
ting elements, are inaccurate. 
In general, simulation calculations within the resonance range 
are to be carried out with utmost care and to be evaluated 
critically. The decisive question is here, by which component 
(shaft, gearbox, turbo coupling, etc.) the mode, i. e. the eigen-
frequency, is primarily determined. 
The biggest problems occur, if a resonance is determined by 
a component that is only slightly damped (e. g. cardan shaft 
or torsionally stiff connecting coupling). Slight shifts of the 
as sumed exciter or the calculated eigenfrequency have a par-
ticularly noticeable effect in this instance. However, the exciter 
amplitude, too, has a major infl uence in connection with the 
system damping. As a guide value, simulation calculations in 
the +/- 20% frequency range should either be completely avo-
ided for such a resonance point, or at least be looked at with a 
very critical eye. 

Fig. 12  illustrates the enlargement functions of a slightly and 
a strongly damped system. As can be seen, within the range 
+/- 20%, the function increases drastically by the eigenfrequen-
cy (dots in the diagram). For example, a frequency shift 
η = 0,92 to η = 0,96, i. e. 4.4%, would result in a doubling of the 
amplitude. This example demonstrates clearly, how sensitive 
calculations in this area are. 

Fig. 12:   Enlargement function 
red – strongly damped (D = 0,4); 
blue – slightly damped (D = 0,005)

On the other hand, there are fewer problems, if an eigenfre-
quency is determined by a strongly damped component (e.g. 
hydrodynamic or highly fl exible coupling). With suffi cient ac-
curacy, amplitudes may even be determined directly at their 

with hydrodynamic coupling without hydrodynamic coupling

primary secondary primary secondary

Mode 1 4,030 Hz  (4,135 Hz)1 0,000 Hz

Mode 2 19,922 Hz 19,461 Hz

Mode 3 73,552 Hz 73,431 Hz

Mode 4 90,241 Hz 90,179 Hz

Mode 5 1219,6 Hz 1219,6 Hz
1 Value in brackets obtained after reduction to two-mass flywheel

Mass inertias Stiffness with Stiffness without

hydrodynamic coupling hydrodynamic coupling

Θ1 = 6 kg m2 K12 = 5,0*107 Nm / rad K12 = 5,0*107 Nm / rad

Θ2 = 1 kg m2 K23 = 4,5*105 Nm / rad K23 = 4,5*105 Nm / rad

Θ3 = 3 kg m2 K34 = 3,0*103 Nm / rad K34 = 0,0 Nm / rad

Θ4 = 2 kg m2 K45 = 2,0*105 Nm / rad K45 = 2,0*105 Nm / rad

Θ5 = 1 kg m2 K56 = 3,0*104 Nm / rad K56 = 3,0*104 Nm / rad

Θ6 = 5 kg m2
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point of resonance. Inaccuracies at the assumed exciter or the 
calculated eigenfrequency bear hardly any effect. The same 
applies to variations of the exciter amplitudes. 
The terms “slightly” or “strongly” damped system are to be 
quantifi ed on the basis of Lehr’s damping factor D. Strictly 
speaking, the latter has only been defi ned for a one-mass sys-
tem. With the help of modal analysis, a transformation to se-
veral one-mass systems is possible. We are actually speaking 
of a modal damping measurement according to Lehr. In Table 
3, the experience values for D are listed. As a general rule, the 
following can be assumed: 

 D > 0,1 strongly damped system
 D < 0,1 slightly damped system

Table 3:  Experience values for Lehr’s Damping Factor

  
As these statements show, the occasionally quite considerable 
differences between measurements and calculations in the 
resonance area are not automatically to be attributed to faulty 
coupling modelling. It is essentially in the nature of simula-
tions which are always carried out on the basis of assumptions 
and simplifi cations that eigenfrequencies and systems ex-
citations can never be determined precisely. This, in combina-
tion with high systems sensitivities, can quickly lead to false 
results and conclusions which in most cases carry consider able 
consequential costs. 

7.  Summary

For the torsional vibration behaviour of hydrodynamic coup-
lings, a simplifi ed description in the form of a Kelvin model 
with frequency-dependent stiffness and damping was present-
ed, from which two fundamental characteristics were deduced. 
On the one hand, there is a low-pass behaviour with low reso-
nance rise which can be attributed to high damping by the 
hydrodynamic coupling. The maximum eigenfrequency, i.e. 
the maximum angular frequency of this low-pass behaviour, 
is below 20 Hz for all standard drive systems, coupling sizes 
and designs, often even below 10 Hz. As a result, excitations of 
higher frequencies at a transmission through the coupling are 
strongly reduced. Yet caution needs to be applied. Especially 
with slightly damped modes, such excitations can still lead to 
higher resonance rises.  
The second fundamental characteristic is the speed-propor-
tional eigenfrequency of drives with hydrodynamic coup ling. 
The prerequisite for this is, however, a constant ratio of exciter 
frequency to input speed. This is the case with most drives 
(e. g. combustion engines, propeller or rotor of a wind power 
station). 
By means of test stand measurements, as well as theoretical 

and experimental examinations of a marine drive, the ap-
plicability of the Kelvin model could be verifi ed. Based on the 
assumption that the stiffness of the hydrodynamic coupling 
is lower by a least one power of ten than the stiffness of the 
remaining drive elements, a separate design of primary and 
secondary-side drivelines is permissible. This design is, howev-
er, limited to the observation of stationary loads, as well as the 
determination of eigenfrequencies. The calculation of torsional 
loads as a result of systems excitation must always be carried 
out for the entire system. The same applies to the urgently rec-
ommended examination of “separately” determined modes. 
Simulation calculations in the resonance range or even directly 
at the point of resonance, are only permissible for strongly 
damped modes. With slightly damped eigenfrequencies, calcu-
lations in the +/-20% area around a point of resonance should 
either be avoided completely, or at least be looked at with a 
very critical eye. Errors of several 100% are possible. 
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Transmitting component Lehr’s Damping Measurement

Steel shaft d < 100 mm 0,005

Steel shaft d > 100 mm 0,01

Transmission gearing P < 100 kW 0,02

Transmission gearing 100 kW < P < 1000 kW 0,04

Transmission gearing P > 1000 kW 0,06

Highly flexible coupling up to 0,13 (at 10 Hz)1

Hydrodynamic coupling at n = 1500 rpm 0,19 (at 10 Hz)1

3,58 (at 0,5 Hz)1

1 Derived from relative damping with exciter frequency = inherent frequency of non-damped system

Lehr‘s Damping Factor 

1 Derived from relative damping with exciter frequency = eigenfrequency of non-damped system
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