

# Damit die Drehzahl stimmt Turboregelkupplungen



Die Turboregelkupplungen von Voith bieten seit über 68 Jahren störungsfreien Betrieb und ermöglichen eine Leistungsübertragung von 100 kW bis 35 000 kW.





# Bewährte und zuverlässige Drehzahlregelung

Durch die zuverlässige Drehzahlregelung im Antriebsstrang haben sich Turboregelkupplungen von Voith in der Praxis bewährt und eignen sich besonders gut für Pumpen-, Lüfter- und Kompressorenanwendungen.

#### **Typische Anwendungsgebiete**

- Kraftwerke
- · Öl- und Gasindustrie
- · Chemische Industrie
- Fernwärmeanlagen
- · Eisen- und Stahlindustrie
- Wasserwirtschaft

# Höhere Systemverfügbarkeit

Die Erhöhung der Systemverfügbarkeit in Ihrem Kraftwerk, Ihrer Raffinerie, Ihrer Ölplattform oder einem anderen industriellen Antriebsstrang ist von größter Bedeutung. Ein erfolgreicher Betrieb sichert eine beständige Produktion, darauf sind wir spezialisiert.

#### Höhere Zuverlässigkeit

Egal ob in der Wüste, dem Regenwald, in Meeresnähe oder in explosionsgefährdeten Bereichen, die Turboregelkupplungen von Voith arbeiten mit höchster Zuverlässigkeit. Dank ihres kompakten und robusten Designs sind sie unempfindlich gegenüber Umwelteinflüssen.

#### Reduzierter Energieverbrauch

Sparen Sie Energie und senken Sie die Betriebskosten! Der Engergieverbrauch des Antriebsmotors ist geringer, verglichen mit dem Einsatz einer Durchflussregeleung durch ein Drosselventil bei fester Motordrehzahl.

#### Reduzierte Kosten

Durch lange Intervalle zwischen den geplanten Wartungsmaßnahmen hält die verschleißfreie hydrodynamische Leistungsübertragung die Wartungskosten gering. Im Gegensatz zu Systemen mit Leistungselektronik werden während der gesamten Betriebszeit keine zusätzlichen Investitionen erforderlich.

#### Längere Lebensdauer

Lastfreier Motoranlauf und sanfte Beschleunigung der angetriebenen Maschine reduzieren die Gesamtbelastung des Antriebsstrangs. Die hydrodynamische Turboregelkupplung dämpft außerdem Drehschwingungen und Stöße und schützt so den Motor und die Arbeitsmaschine. Dies erhöht die Lebensdauer Ihres gesamten Antriebsstrangs.

#### Platzsparend - mit integriertem Schmierölsystem

Das Schmierölsystem, das in die Voith Turboregelkupplung integriert ist, versorgt den Motor und die Arbeitsmaschine bei Bedarf mit Öl. So sparen Sie Platz und Geld.

Weltweit in mehr als

# Antrieben im Einsatz

Bis zu

4-X

höhere Lebensdauer als ein Frequenzumrichter

Bereits über

Jahre im Einsatz

Leistungen bis zu

25000 kW

Einsatztemperaturen von

-40°C to +50°C

(Umgebungstemperatur)

# OnCare.Health IOLIS – Neues digitales Messsystem für drehzahlvariable Kupplungen

#### SVTL drehzahlvariable Kupplung



Als intelligentes Messsystem für drehzahlvariable Kupplungen überträgt OnCare. Health IOLIS Prozessdaten digital von der Kupplung über BUS-Protokolle (ProfiNet, ModBus ICP, Ethernet IP) an den Kontrollraum. Das System lässt sich einfach in bestehende und neue Kupplungen einbauen.

Dank des standardisierten IO-Link-Sensorsystemkonzepts sind alle Komponenten und Sensoren weltweit verfügbar, einfach zu installieren und zu bedienen. Sie bestehen aus IO-Link-fähigen Sensoren, IO-Link-Messkomponenten und einem Display zur Visualisierung von Prozessdaten.

#### Vorteile

- + Intelligentes und einfaches Sensorsystem
- + Minimale Verdrahtung
- + Einfache Wartung und Handhabung
- + Schneller und präziser Datentransfer
- + Schneller Austausch



## Prozessdaten in Echtzeit: OnCare.Health IOLIS-Startbildschirm



#### Zentrale Funktionen:

- Übersicht über gemessene Prozessdaten
- Echtzeit-Anzeige der Position des Schöpfrohrs
- Möglichkeit der Visualisierung auf einem Remote-Bildschirm über den web Browser
- Anzeige von Dringlichkeitswarnungen/Alarmen
- IO-Link-Master Status

Temperatur, Druck oder Position des Schöpfrohrs, Trends und Unregelmäßigkeiten werden alle unmittelbar auf dem Startbildschirm angezeigt. Auffälligkeiten können rechtzeitig erkannt werden, was Korrekturmaßnahmen erleichtert, bevor ein potenzieller Ausfall eintritt.

#### Plattform für die Zukunft des IoT

Um Ihren Betrieb für die Zukunft vorzubereiten, bietet OnCare.Health IOLIS das Potenzial, über eine Ethernet-Verbindung in Netzwerksysteme integriert zu werden.

#### Dies ermöglicht:

- Zustandsüberwachung
- Trend-Indikationen
- · Sicherer Fernzugriff
- · Predictive Maintenance
- Fernwartung

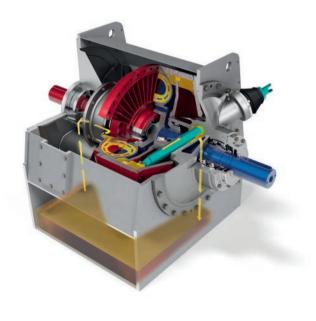


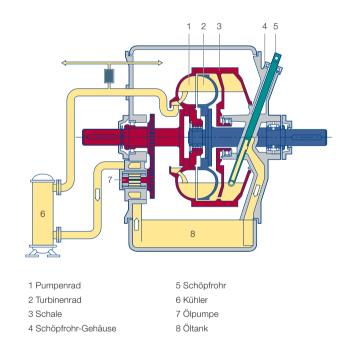


# **Unser Portfolio**

Gemeinsam mit Ihnen ermitteln wir die am besten geeignete Turboregelkupplung für Ihren Antriebsstrang.

| Тур            | Eigenschaften                                                                                                                                                      |  |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| SVTL           | Typ SVTL verfügt über ein Tunnelgehäuse und Wälzlager                                                                                                              |  |  |  |  |
| SVNL<br>SVNL G | Typ SNVL verfügt über ein horizontal geteiltes<br>Gehäuse und Wälzlager<br>Typ SVNL G ist mit Gleitlagern ausgestattet                                             |  |  |  |  |
| SVL M          | Typ SVL M zeichnet sich durch eine besonders hohe<br>Leistungsdichte aus und hat ein horizontal geteiltes<br>Gusseisengehäuse und ist mit Gleitlagern ausgestattet |  |  |  |  |


# Kompakt, einfach, robust

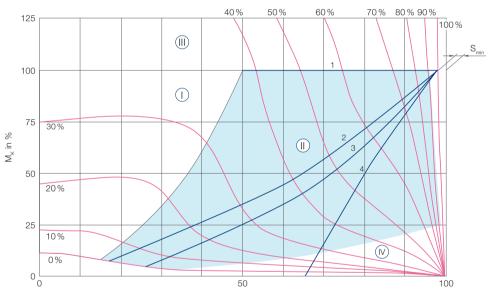

## Wie es funktioniert

Drehzahlvariable Kupplungen von Voith sind hydrodynamische Kupplungen. Sie verbinden die Antriebsmaschine - in der Regel einen Elektromotor - mit der entsprechenden Arbeitsmaschine. Die Leistung wird durch die Strömungsenergie des Betriebsmediums übertragen. Diese Flüssigkeit strömt in einem geschlossenem Arbeitsraum zwischen dem Pumpenrad (verbunden mit der Antriebswelle) und dem Turbinenrad (verbunden mit der Abtriebswelle).

Der Füllstand der Kupplung kann während des Betriebs zwischen 0 % und 100 % eingestellt werden, wodurch eine präzise und stufenlose Steuerung der Abtriebsdrehzahl ermöglicht wird. Der Regelbereich hängt von der Drehmomentcharakteristik der Arbeitsmaschine ab.

#### Turboregelkupplung mit variabler Drehzahl - 3D-Schnittdarstellung und vereinfachter Längsschnitt






## Drehmomentkurven

#### Betriebsbereich

Das Leistungsdiagramm zeigt die übertragbaren Kupplungsdrehmomente  $M_{\rm K}$  für verschiedene Schöpfrohrpositionen in Abhängigkeit von der Abtriebsdrehzahl. Die gewünschte Abtriebsdrehzahl ergibt sich aus einem Schnittpunkt des Kupplungsdrehmoments  $M_{\rm K}$  und des Lastmoments (Lastkennlinie).

#### Drehmomentkurven für verschiedene angetriebene Maschinen im Kennfeld der Turboregelkupplung



Abtriebsdrehzahl in % der Eingangsdrehzahl

#### Betriebsbereiche

Die genaue Kennlinie ist abhängig von der Größe der Kupplung, der zirkulierenden Menge und der Ölviskosität.

- , (IV) Startbereich
- Regelbereich
- | (II) Überlastbereich

#### Parameter

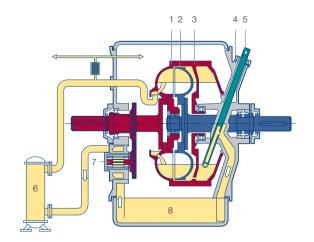
Schöpfrohrstellung in %

- M<sub>K</sub> Kupplungsdrehmoment
- S<sub>min</sub> Nennschlupf am Auslegungspunkt
- $S = (1 n_2/n_1) \cdot 100 [\%]$
- n<sub>1</sub> Eingangsdrehzahl
- n, Abtriebsdrehzahl

#### Typische Belastungseigenschaften

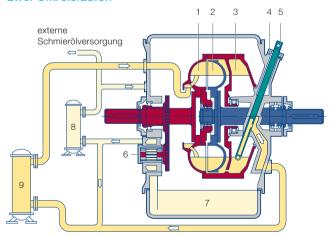
- Konstantes Drehmoment (z.B. volumetrische Pumpen mit konstantem Gegendruck und Kompressoren)
- 2 Abnehmendes Drehmoment (z.B. Kesselspeisepumpen mit Gleitdruckbetrieb)
- 3 Parabolisches Drehmoment (Pumpen ohne Gegendruck, Ventilatoren)
- 4 Abnehmendes Drehmoment (z.B. Kesselspeisepumpen mit Festdruckbetrieb)

## **SVTL**


Die SVTL-Kupplung ist eine selbsttragende Konstruktion mit einem Tunnelgehäuse. Die rotierenden Teile befinden sich in einem geschlossenen, öldichten Gehäuse. Verbindungskupplungen verbinden den Elektromotor und die angetriebene Maschine mit der drehzahlvariablen Turboregelkupplung. Der Öltank ist in das Gehäuse eingebaut und die Ölpumpe wird von der Eingangswelle angetrieben. Die Wellen sind mit Wälzlagern ausgestattet werden von einer mechanisch angetriebenen Schmierölpumpe in der Turboregelkupplung geschmiert.

Die Standardausführung der SVTL erfordert einen Mischölkühler für das Arbeitsöl und das Schmieröl. Für Maschinen in höheren Leistungsklassen sind zwei getrennte Ölkreisläufe mit einem Kühler für das Arbeitsöl und einem für das Schmieröl notwendig.

#### **SVTL** Turboregelkupplung

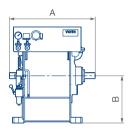


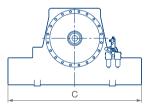

#### SVTL vereinfachter Längsschnitt - Standardausführung



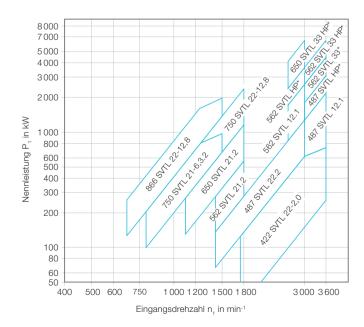
- 1 Pumpenrad
- 2 Turbinenrad
- 3 Schale
- 4 Schöpfrohr-Gehäuse
- 5 Schöpfrohr
- 6 Kühler
- 7 Ölpumpe
- 8 Öltank

## SVTL vereinfachter Längsschnitt – Ausführung mit zwei Ölkreisläufen





- 1 Pumpenrad
- 2 Turbinenrad
- 3 Schale
- 4 Schöpfrohr-Gehäuse
- 5 Schöpfrohr
- 6 Ölpumpe
- 7 Öltank
- 8 Schmierölkühler
- 9 Arbeitsölkühler

12


#### **SVTL** Abmessungen

| Тур                 | A<br>[mm] | B<br>[mm] | C<br>[mm] | Ölfüllung<br>[l] | Gewicht<br>[kg] |
|---------------------|-----------|-----------|-----------|------------------|-----------------|
| 422 SVTL 22-2,0     | 1 120     | 630       | 1 780     | 250              | 850             |
| 487 SVTL 22.2       | 1 145     | 630       | 1780      | 250              | 900             |
| 487 SVTL 12.1       | 1 255     | 800       | 1780      | 500              | 1 200           |
| 487 SVTL HP*        | 1 255     | 800       | 1780      | 500              | 1 200           |
| 562 SVTL 21.2       | 1145      | 630       | 1780      | 250              | 970             |
| 562 SVTL 12.1       | 1 255     | 800       | 1780      | 500              | 1 260           |
| 562 SVTL HP*        | 1358      | 800       | 1 350     | 450              | 2200            |
| 562 SVTL 33*        | 1358      | 800       | 1 350     | 450              | 2200            |
| 562 SVTL 33 HP*     | 1358      | 800       | 1 350     | 450              | 2200            |
| 650 SVTL 21.2       | 1310      | 750       | 2000      | 300              | 1 200           |
| 650 SVTL 33 HP*     | 1 580     | 800       | 1 530     | 470              | 3 000           |
| 750 SVTL 21.2-6,3.2 | 1310      | 750       | 2000      | 300              | 1 300           |
| 750 SVTL 22-12,8    | 1 469     | 725       | 1 400     | 400              | 1750            |
| 866 SVTL 22-12,8    | 1 469     | 725       | 1 400     | 400              | 1800            |

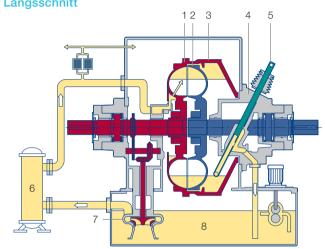




#### **SVTL** Auswahldiagramm



<sup>\*</sup> Ausführung mit zwei Ölkreisläufen


## SVNL und SVNL G

Die SVNL und SVNL G sind selbsttragende Konstruktionen in horizontal geteilten Gehäusen. Die rotierenden Teile sind in einem geschlossenen, öldichten Gehäuse untergebracht.

Verbindungskupplungen verbinden den Hauptmotor und die angetriebene Maschine mit der Turboregelkupplung. Der Öltank ist in das Gehäuse eingebaut und eine Kreiselpumpe dient als Ölpumpe (einige Modelle verfügen über eine Zahnradpumpe) und wird direkt von der Eingangswelle angetrieben.

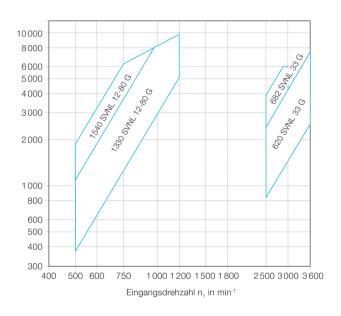
Die Hauptwellenlager der SVNL G Kupplung sind mit Gleitlagern ausgestattet. Die Lager sind druckgeschmiert. Eine elektrisch angetriebene Hilfsschmierpumpe ist zur Vorschmierung beim Anlauf vorhanden.

## Turboregelkupplung SVNL G – vereinfachter Längsschnitt



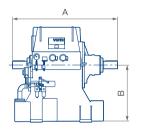
- 1 Pumpenrad
- 5 Schöpfrohr
- 2 Turbinenrad
- 6 Kühler
- 3 Schale
- 7 Ölpumpe
- 4 Schöpfrohr-Gehäuse
- 8 Öltank

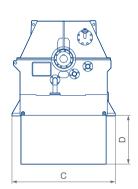
#### **SVNL** Turboregelkupplung


#### SVNL vereinfchter Längsschnitt






- 1 Pumpenrad
- 5 Schöpfrohr
- 2 Turbinenrad
- 6 Kühler
- 3 Schale
- 7 Ölpumpe
- 4 Schöpfrohr-Gehäuse
- 8 Öltank


#### **SVNL** G Auswahldiagramm

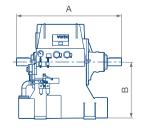


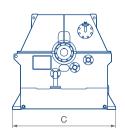
#### **SVNL** G Abmessungen

| Тур               | A<br>[mm] | B<br>[mm] | C<br>[mm] | D<br>[mm] | Ölfüllung<br>[l] | Gewicht<br>[kg] |
|-------------------|-----------|-----------|-----------|-----------|------------------|-----------------|
| 620 SVNL 33 G     | 1 485     | 900       | 2160      | -         | 430              | 3800            |
| 682 SVNL 33 G     | 1 485     | 900       | 2160      | -         | 430              | 3980            |
| 1330 SVNL 12-80 G | 3 150     | 800       | 2400      | 1 000     | 2500             | 12500           |
| 1540 SVNL 12-80 G | 3 150     | 800       | 2400      | 1 000     | 2 500            | 13800           |






#### **SVNL** Auswahldiagramm



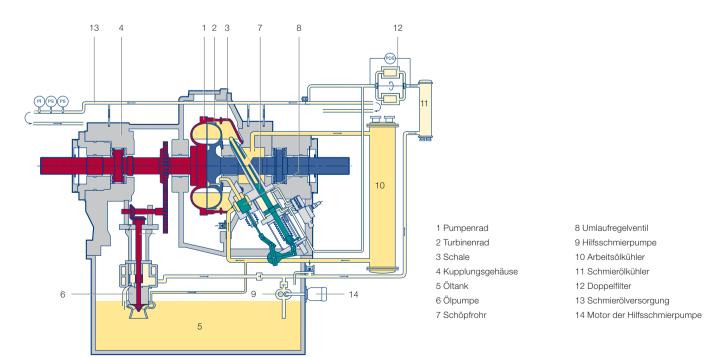

 $<sup>^{\</sup>star}$  für Ausführungen mit zwei Ölkreisläufen siehe Diagramm auf Seite 12

#### **SVNL** Abmessungen

| Тур               | A<br>[mm] | B<br>[mm] | C<br>[mm] | Ölfüllung<br>[l] | Gewicht<br>[kg] |
|-------------------|-----------|-----------|-----------|------------------|-----------------|
| 866 SVNL 22-26    | 1760      | 1 060     | 1920      | 780              | 3 650           |
| 1000 SVNL 22-32.1 | 1 950     | 1 060     | 1920      | 780              | 3 650           |
| 1000 SVNL 22-32*  | 1 950     | 1 060     | 1920      | 780              | 3 650           |
| 1150 SVNL 22-32.1 | 1 950     | 1 060     | 1920      | 780              | 3800            |
| 1150 SVNL 22-32*  | 1 950     | 1 060     | 1920      | 780              | 3800            |
| 1210 SVNL 21-32.1 | 1 950     | 1 060     | 1920      | 780              | 4 000           |
| 1210 SVNL HP      | 1 950     | 1 060     | 1920      | 780              | 4000            |

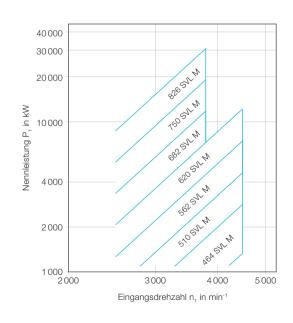





## SVL M

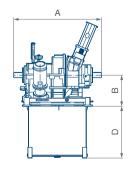
Die SVL M-Kupplung ist eine selbsttragende Konstruktion mit einer hohen Leistungsdichte. Antriebs- und Abtriebswelle sind jeweils einzeln im gusseisernen Gehäuse gelagert. Verbindungskupplungen verbinden den Hauptmotor mit der Turboregelkupplung.

Der Öltank ist mit dem Gehäuseboden verschraubt. Die Kupplung verfügt über zwei Ölkreisläufe: einen Arbeitsölkreislauf und einen Schmierölkreislauf.


Beide Kreisläufe werden von mechanisch angetriebenen Pumpen versorgt. Ein Ölumlaufregelventil dient zur Anpassung an die wirklich erforderliche Arbeitsölmenge in Abhängigkeit der Drehmomentcharakteristik der angetriebenen Maschine, was zu einer Reduktion der Ölumlaufverluste führt. Die Wellen sind mit Gleitlagern ausgestattet und die Lager werden mit Drucköl zwangsgeschmiert.

#### SVL M Turboregelkupplung – vereinfachter Längsschnitt



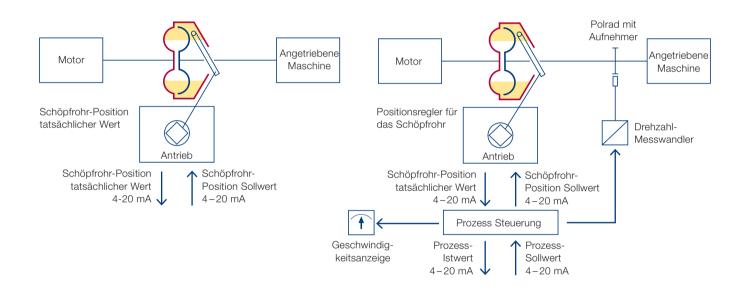



#### SVL M Auswahldiagramm



#### SVL M Abmessungen

| Туре      | A<br>[mm] | B<br>[mm] | C<br>[mm] | D<br>[mm] | Ölfüllung<br>[l] | Gewicht<br>[kg] |
|-----------|-----------|-----------|-----------|-----------|------------------|-----------------|
| 464 SVL M | 1 855     | 720       | 1 540     | 1 280     | 1 460            | 6700            |
| 510 SVL M | 1 985     | 720       | 1 540     | 1 280     | 1 460            | 6800            |
| 562 SVL M | 2 045     | 720       | 1 540     | 1 280     | 1 460            | 6900            |
| 620 SVL M | 2115      | 720       | 1 540     | 1 280     | 1 460            | 7 000           |
| 682 SVL M | 2 265     | 720       | 1 540     | 1 280     | 1 460            | 7 100           |
| 750 SVL M | 2705      | 920       | 1610      | 1 130     | 1700             | 7 600           |
| 826 SVL M | 2910      | 920       | 1610      | 1 130     | 1700             | 8 000           |






# Integration in Regelkreise

Turboregelkupplungen werden oft in einen automatischen Prozess integriert.

#### Vergleich von Positions- und Prozessregelkreis



#### Positionsregelkreis

 Schöpfrohr-Regelantrieb, einschließlich Positionsregler für kontinuierliche Regelung

#### Prozessregelkreis

- Prozess-Steuerung
- Schöpfrohrantrieb einschließlich Positionssteuerung für kontinuierliche Regelung

Eine Drehzahlmesseinrichtung ist in Fällen erforderlich, in denen die Drehzahl angezeigt oder als Prozesswert verwendet werden soll.

Wie bei der Drehzahl kann auch ein Prozesswert (z.B. Druck oder Durchfluss) in einen Regelkreis integriert werden. Dieser Prozesswert wird dann als Sollwert verwendet.

# **Voith Service**

Service vom Hersteller erhöht die Effizienz, Sicherheit und Verfügbarkeit Ihrer Anlage. Die Ingenieure und Techniker des weltweiten Voith-Servicenetzwerks sind für Sie da.

#### Niederlassungen weltweit



#### Unsere Dienstleistungen:

- · Installation und Inbetriebnahme
- Training
- Wartung
- · Original-Ersatzteile
- · Modernisierung, Retrofits und Upgrades
- · Dienstleistungsverträge

#### Vorteile

- + Verbesserte Betriebssicherheit
- + Erhöhte Lebensdauer
- + Gewährleistete Produktivität
- + Optimierte Instandhaltungskosten
- + Planbare Gesamtsystemkosten

Voith Group St. Pöltener Straße 43 89522 Heidenheim, Deutschland

Kontakt:

Tel. +49 7951 32-261 vs.drives@voith.com www.voith.com/vs-coupling









